
 / Collaborative distributed version control documentation

Collaborative distributed version control

We have learned how to work with a Git repository used by a single person. What about
sharing and collaborating?

Share the folder using email or using some file sharing service: This would lead to many
back and forth emails and would be difficult to keep all copies synchronized.
One person’s repository on the web: Allows one person to keep track of more projects,
gain visibility, feedback, and recognition.
Common repository for a group: Everyone can directly update the same repository. Good
for small groups.
Forks or copies with different owners: Anyone can suggest changes, even without
advance permission. Maintainers approve what they agree with.

Being able to share more easily (going down the above list) is transformative (easier to change
something, that is you are not the sole owner) because it allows projects to scale to a new
level.

We will discover and exercise the most typical workflows when collaborating using services
like GitHub.

⚙ Prerequisites

1. Basic understanding of Git.
2. You need a GitHub account.

We will do this exercise on GitHub but also GitLab and Bitbucket allow similar workflows
and basically everything that we will discuss is transferable. With this material and these
exercises we do not endorse the company GitHub. We have chosen to demonstrate a
number of concepts using examples with GitHub because it is currently the most popular
web platform for hosting Git repositories and the chance is high that you will interact
with GitHub-based repositories even if you choose to host your Git repository on another
platform.

Concepts around collaboration

 Objectives

Be able to decide whether to divide work at the branch level or at the repository level.

https://github.com/
https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://github.com/
https://github.com/
https://github.com/

Commits, branches, repositories, forks, clones

repository: The project, contains all data and history (commits, branches, tags).
commit: Snapshot of the project, gets a unique identifier (e.g.
c7f0e8bfc718be04525847fc7ac237f470add76e).

branch: Independent development line. The main development line is often called main .
Technically, a branch in Git is implemented as a pointer to a commit (imagine a sticky note
with a branch name on it).
tag: A pointer to one commit, to be able to refer to it later. Like a commemorative plaque
that you attach to a particular commit (e.g. phd-printed or paper-submitted).
cloning: Copying the whole repository to your laptop - the first time. It is not necessary to
download each file one by one.
forking: Taking a copy of a repository (which is typically not yours) - your copy (fork) stays
on GitHub/GitLab and you can make changes to your copy.

Cloning a repository

In order to make a complete copy a whole repository, the git clone command can be used.
When cloning, all the files, of all or selected branches, of a repository are copied in one
operation. Cloning of a repository is of relevance in a few different situations:

Working on your own, cloning is the operation that you can use to create multiple
instances of a repository on, for instance, a personal computer, a server, and a
supercomputer.
The parent repository could be a repository that you or your colleague own. A common
use case for cloning is when working together within a smaller team where everyone has
read and write access to the same Git repository.
Alternatively, cloning can be made from a public repository of a code that you would like
to use. Perhaps you have no intention to change the code, but would like to stay in tune
with the latest developments, also in-between releases of new versions of the code.

https://coderefinery.github.io/git-intro/reference/#term-repository
https://coderefinery.github.io/git-intro/reference/#term-commit
https://coderefinery.github.io/git-intro/reference/#term-branch
https://coderefinery.github.io/git-intro/reference/#term-tag
https://en.wikipedia.org/wiki/Commemorative_plaque
https://coderefinery.github.io/git-intro/reference/#term-clone
https://coderefinery.github.io/git-intro/reference/#term-fork

Forking and cloning

Forking a repository

When a fork is made on GitHub/GitLab a complete copy, of all or selected branches, of the
repository is made. The copy will reside under a different account on GitHub/GitLab. Forking
of a repository is of high relevance when working with a Git repository to which you do not
have write access.

In the fork repository commits can be made to the default branch (main or master), and
to other branches.
The commits that are made within the branches of the fork repository can be contributed
back to the parent repository by means of pull or merge requests.

Synchronizing changes between repositories

Repositories that are forked or cloned do not automatically synchronize themselves.
We need a mechanism to communicate changes between the repositories.
We will pull or fetch updates from remote repositories (we will soon discuss the
difference between pull and fetch).
We will push updates to remote repositories.
We will learn how to suggest changes within repositories on GitHub and across
repositories (pull requests).
A main difference between cloning a repository and forking a repository is that the former
is a general operation for generating copies of a repository to different computers,
whereas forking is a particular operation implemented on GitHub/GitLab.

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/forkandclone.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/forkandclone.png

Should we clone or fork?

Should we all work inside one repository and clone? Or should we all work on forks?

For most small or medium-sized research projects you probably want to work by cloning
a repository that all research group has write access to (we will exercise this in the next
section).
It’s only when you want to contribute to a project that you don’t have write access to
that you need to use forks (we will practice this as well).

Generating from templates

A repository can be marked as template and new repositories can be generated from it, like
using a cookie-cutter.

The newly created repository will start with a new (“flattened”) history, only one commit, and
not inherit the history of the template.

Generating from a template.

Collaborating within the same repository

In this episode, we will learn how to collaborate within the same repository. We will learn
how to cross-reference issues and pull requests, how to review pull requests, and how to use
draft pull requests.

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/generate.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/generate.png

This exercise will form a good basis for collaboration that is suitable for most research
groups.

 Note

When you read or hear pull request, please think of a change proposal.

Exercise

In this exercise, we will contribute to a repository via a pull request. This means that you
propose some change, and then it can be discussed and accepted (sometimes after requesting
further improvements).

⚙ Exercise preparation

First, we need to get access to some repository to which we will contribute.

Part of team/exercise room Following on your own

Form not too large groups (4-5 persons).
Each group needs to appoint someone who will host the shared GitHub
repository: the maintainer. This is typically the exercise lead (if available).
Everyone else is a collaborator.
The maintainer (one person per group) generates a new repository called
centralized-workflow-exercise from the template

https://github.com/coderefinery/recipe-book-template (There is no need to tick
“Include all branches” for this exercise):

Then everyone in your group needs their GitHub account to be added as
collaborator to the exercise repository:

https://github.com/coderefinery/recipe-book-template
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/generate_repo.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/generate_repo.png

Don’t forget to accept the invitation

Check https://github.com/settings/organizations/
Alternatively check the inbox for the email account you registered with GitHub.
GitHub emails you an invitation link, but if you don’t receive it you can go to your
GitHub notifications in the top right corner. The maintainer can also “copy invite
link” and share it within the group.

Watching and unwatching repositories

Now that you are a collaborator, you get notified about new issues and pull
requests via email.
If you do not wish this, you can “unwatch” a repository (top of the project page).
However, we recommend watching repositories you are interested in. You can
learn things from experts just by watching the activity that come through a
popular project.

Unwatch a repository by clicking “Unwatch” in the repository view, then “Participating and
@mentions” - this way, you will get notifications about your own interactions.

✍️ Exercise: Collaborating within the same repository (25 min)

Technical requirements (from installation instructions):

Collaborators give their GitHub usernames to their chosen maintainer.
Maintainer gives the other group members the newly created GitHub
repository URL.
Maintainer adds participants as collaborators to their project (Settings ->
Collaborators and teams -> Manage access -> Add people).

https://github.com/settings/organizations/

If you create the commits locally: Being able to authenticate to GitHub

What is familiar from the previous workshop days (not repeated here):

Cloning a repository (previous lesson)
Creating a branch (previous lesson)
Committing a change on the new branch (previous lesson)
Submit a pull request towards the main branch (previous lesson)

What will be new in this exercise:

If you create the changes locally, you will need to push them to the remote repository.
Learning what a protected branch is and how to modify a protected branch: using a
pull request.
Cross-referencing issues and pull requests.
Practice to review a pull request.
Learn about the value of draft pull requests.

Exercise tasks:

1. Open an issue where you describe the change you want to make. Note down the issue
number since you will need it later.

2. If you work locally and not on GitHub, you need to clone the repository to your
computer before you can create a new branch (more details in “Solution and hints”
below).

3. Create a new branch.
4. Make a change to the recipe book on the new branch and in the commit cross-

reference the issue you opened (see the walk-through below for how to do that).
5. Push your new branch (with the new commit) to the repository you are working on.
6. Open a pull request towards the main branch.
7. Review somebody else’s pull request and give constructive feedback. Merge their pull

request.
8. Try to create a new branch with some half-finished work and open a draft pull request.

Verify that the draft pull request cannot be merged since it is not meant to be merged
yet.

Solution and hints

(1) Opening an issue

This is done through the GitHub web interface. For example, you could give the name of the
recipe you want to add (so that others don’t add the same one). It is the “Issues” tab.

(2) Create a new branch.

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/local-workflow/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

If on GitHub, you can make the branch in the web interface (Committing changes). If working
locally, you need to follow Cloning a Git repository and working locally.
(3) Make a change adding the recipe

Add a new file with the recipe in it. Commit the file. In the commit message, include the note
about the issue number, saying that this will close that issue (right below here we show how).

Cross-referencing issues and pull requests

Each issue and each pull request gets a number and you can cross-reference them.

When you open an issue, note down the issue number (in this case it is #2):

You can reference this issue number in a commit message or in a pull request, like in this
commit message:

If you forget to do that in your commit message, you can also reference the issue in the pull
request description. And instead of fixes you can also use closes or resolves or fix or
close or resolve (case insensitive).

Here are all the keywords that GitHub recognizes:
https://help.github.com/en/articles/closing-issues-using-keywords

Then observe what happens in the issue once your commit gets merged: it will automatically
close the issue and create a link between the issue and the commit. This is very useful for
tracking what changes were made in response to which issue and to know from when until
when precisely the issue was open.

(4) Push to GitHub as a new branch

this is the new recipe; fixes #2

https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/local-workflow/
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/issue-number.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/issue-number.png
https://help.github.com/en/articles/closing-issues-using-keywords

This is only necessary if you created the changes locally. If you created the changes directly
on GitHub, you can skip this step.

Push the branch to the repository. You should end up with a branch visible in the GitHub
web view (if you are unsure how, see Cloning a Git repository and working locally).

(5) Open a pull request towards the main branch

This is done through the GitHub web interface. We saw this in a previous lesson.

(6) Reviewing pull requests

You review through the GitHub web interface.

Checklist for reviewing a pull request:

Be kind, on the other side is a human who has put effort into this.
Be constructive: if you see a problem, suggest a solution.
Towards which branch is this directed?
Is the title descriptive?
Is the description informative?
Scroll down to see commits.
Scroll down to see the changes.

VS Code Command line

In VS Code, you can “publish the branch” to the remote repository by clicking the cloud
icon in the bottom left corner of the window:

https://coderefinery.github.io/git-intro/local-workflow/
https://coderefinery.github.io/git-intro/merging/
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/vscode-publish-branch.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/vscode-publish-branch.png

If you get incredibly many changes, also consider the license or copyright and ask where
all that code is coming from.
Again, be kind and constructive.
Later we will learn how to suggest changes directly in the pull request.

If someone is new, it’s often nice to say something encouraging in the comments before
merging (even if it’s just “thanks”). If all is good and there’s not much else to say, you could
merge directly.
(7) Draft pull requests

Try to create a draft pull request:

Verify that the draft pull request cannot be merged until it is marked as ready for review:

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/draft-pr.png

Draft pull requests can be useful for:

Feedback: You can open a pull request early to get feedback on your work without
signaling that it is ready to merge.
Information: They can help communicating to others that a change is coming up and in
progress.

What is a protected branch? And how to modify it?

A protected branch on GitHub or GitLab is a branch that cannot (accidentally) deleted or
force-pushed to. It is also possible to require that a branch cannot be directly pushed to or
modified, but that changes must be submitted via a pull request.

To protect a branch in your own repository, go to “Settings” -> “Branches”.

Summary

We used all the same pieces that we’ve learned previously.
But we successfully contributed to a collaborative project!
The pull request allowed us to contribute without changing directly: this is very good
when it’s not mainly our project.

💬 Let’s clarify typical questions

What is the difference between git pull and a pull request?

git pull is a command that fetches changes from a remote repository and merges
them into the current branch.
Pull request: change proposal. It might have been named this way because after you
accept a pull request, internally it git pulls the changes from the branch containing the
change proposal.

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/draft-pr-wip.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/draft-pr-wip.png

What is the difference between a pull request and an issue?

Pull request is a mechanism to suggest and review changes.
An issue is a place where we note and discuss problems or ideas.
Both get a number and they can reference each other but that’s all they have in
common.
Linking a pull request to an issue

What is the practical difference between branch + pull and fork + pull?

The practical difference between branch + pull and fork + pull lies in how
collaboration is structured in a Git-based workflow.
Branch + Pull (Single Repository Contribution) : Used when contributing to a
repository where you have direct write access.
Process:
1. Clone the main repository.
2. Create a new branch in the same repository.
3. Make changes and commit them.
4. Push the branch to the same repository.
5. Open a Pull Request from your branch to the main branch.

Fork + Pull (External Contribution): Used when contributing to a repository where you
do not have write access.
Process:
1. Fork the repository (create your own copy under your GitHub account).
2. Clone your forked repository locally.
3. Create a new branch in your fork.
4. Make changes and commit them.
5. Push the branch to your fork.
6. Open a Pull Request from your fork to the original repository.

Practicing code review

In this episode we will practice the code review process. We will learn how to ask for
changes in a pull request, how to suggest a change in a pull request, and how to modify a pull
request.

This will enable research groups to work more collaboratively and to not only improve the
code quality but also to learn from each other.

Exercise

⚙ Exercise preparation

We can continue in the same exercise repository which we have used in the previous
episode.

https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue

✍️ Exercise: Practicing code review (25 min)

Technical requirements:

If you create the commits locally: Being able to authenticate to GitHub

What is familiar from previous episodes:

Creating a branch (previous lesson)
Committing a change on the new branch (previous lesson)
Opening and merging pull requests (previous lesson)

What will be new in this exercise:

As a reviewer, we will learn how to ask for changes in a pull request.
As a reviewer, we will learn how to suggest a change in a pull request.
As a submitter, we will learn how to modify a pull request without closing the
incomplete one and opening a new one.

Exercise tasks:

1. Create a new branch and one or few commits: in these improve something but also
deliberately introduce a typo and also a larger mistake which we will want to fix
during the code review.

2. Open a pull request towards the main branch.
3. As a reviewer to somebody else’s pull request, ask for an improvement and also

directly suggest a change for the small typo. (Hint: suggestions are possible through
the GitHub web interface, view of a pull request, “Files changed” view, after selecting
some lines. Look for the “±” button.)

4. As the submitter, learn how to accept the suggested change. (Hint: GitHub web
interface, “Files Changed” view.)

5. As the submitter, improve the pull request without having to close and open a new
one: by adding a new commit to the same branch. (Hint: push to the branch again.)

6. Once the changes are addressed, merge the pull request.

Help and discussion

From here on out, we don’t give detailed steps to the solution. You need to combine what you
know, and the extra info below, in order to solve the above.

How to ask for changes in a pull request

Technically, there are at least two common ways to ask for changes in a pull request.

Either in the comment field of the pull request:

https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

Or by using the “Review changes”:

And always please be kind and constructive in your comments. Remember that the goal is not
gate-keeping but collaborative learning.
How to suggest a change in a pull request as a reviewer

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/comment.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/files-changed.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/files-changed.png

If you see a very small problem that is easy to fix, you can suggest a change as a reviewer.

Instead of asking the submitter to fix the tiny problem, you can suggest a change by clicking
on the plus sign next to the line number in the “Files changed” tab:

Here you can comment on specific lines or even line ranges.

But now the interesting part is to click on the “Add a suggestion” symbol (the one that looks
like plus and minus). Now you can fix the tiny problem (in this case a typo) and then click on
the “Add single comment” button:

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/leave-comment.png

The result is this and the submitter can accept the change with a single click:

After accepting with “Commit suggestion”, the improvement gets added to the pull request as
a new commit.
How to modify a pull request to address the review comments

If the reviewer asks for changes, it is not necessary to close the pull request and later open a
new one. It can even be counter-productive to do so: This can fragment the discussion and
the history of the pull request and can make it harder to understand the context of the
changes.

A much better mechanism is to recognize that pull requests are not implemented from a
specific commit to a specific branch, but always from a branch to a branch.

This means that you can make amendments to the pull request by adding new commits to the
same source branch. This way the pull request will be updated automatically and the
reviewer can see the new changes and comment on them.

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/commit-suggestion.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/commit-suggestion.png

The fact that pull requests are from branch to branch also strongly suggests that it is a good
practice to create a new branch for each pull request. Otherwise you could accidentally
modify an open pull request by adding new commits to the source branch.

Summary

Our process isn’t just about code now. It’s about discussion and working together to
make the whole process better.
GitHub (or GitLab) discussions and reviewing are quite powerful and can make small
changes easy.

How to contribute changes to repositories that belong to
others

In this episode we prepare you to suggest and contribute changes to repositories that belong
to others. These might be open source projects that you use in your work.

We will see how Git and services like GitHub or GitLab can be used to suggest modification
without having to ask for write access to the repository and accept modifications without
having to grant write access to others.

Exercise

⚙ Exercise preparation

✍️ Exercise: Collaborating within the same repository (25 min)

Technical requirements:

If you create the commits locally: Being able to authenticate to GitHub

Part of team/exercise room Following on your own

Maintainer (team lead):

Create an exercise repository called forking-workflow-exercise by generating
from a template using this template: https://github.com/coderefinery/recipe-
book-template.
In this case we do not add collaborators to the repository (this is the point of this
example).
Share the link to the newly created repository with your group.

Learners in exercise team: Fork the newly created repository (not the “coderefinery”
one) and then clone your fork (if you wish to work locally).

https://coderefinery.github.io/installation/ssh/
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://github.com/coderefinery/recipe-book-template
https://github.com/coderefinery/recipe-book-template

What is familiar from the previous episodes:

Forking a repository (previous lesson)
Creating a branch (previous lesson)
Committing a change on the new branch (previous lesson)
Opening and merging pull requests (previous lesson)

What will be new in this exercise:

Opening a pull request towards the upstream repository.
Pull requests can be coupled with automated testing.
Learning that your fork can get out of date.
After the pull requests are merged, updating your fork with the changes.
Learn how to approach other people’s repositories with ideas, changes, and requests.

Exercise tasks:

1. Open an issue in the upstream exercise repository where you describe the change you
want to make. Take note of the issue number.

2. Create a new branch in your fork of the repository.
3. Make a change to the recipe book on the new branch and in the commit cross-

reference the issue you opened. See the walk-through below for how to do this.
4. Open a pull request towards the upstream repository.
5. Team leaders will merge the pull requests. For individual participants, the instructors

and workshop organizers will review and merge the pull requests. During the review,
pay attention to the automated test step (here for demonstration purposes, we test
whether the recipe contains an ingredients and an instructions sections).

6. After few pull requests are merged, update your fork with the changes.
7. Check that in your fork you can see changes from other people’s pull requests.

Help and discussion

Help! I don’t have permissions to push my local changes

Maybe you see an error like this one:

Or like this one:

Please make sure you have the correct access rights
and the repository exists.

failed to push some refs to cr-workshop-exercises/forking-workflow-exercise.git

https://coderefinery.github.io/git-intro/browsing/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/

In this case you probably try to push the changes not to your fork but to the original
repository and in this exercise you do not have write access to the original repository.

The simpler solution is to clone again but this time your fork.

✔︎Recovery

But if you want to keep your local changes, you can change the remote URL to point to
your fork. Check where your remote points to with git remote --verbose .

It should look like this (replace USER with your GitHub username):

It should not look like this:

In this case you can adjust “origin” to point to your fork with:

Opening a pull request towards the upstream repository

We have learned in the previous episode that pull requests are always from branch to
branch. But the branch can be in a different repository.

When you open a pull request in a fork, by default GitHub will suggest to direct it towards
the default branch of the upstream repository.

This can be changed and it should always be verified, but in this case this is exactly what we
want to do, from fork towards upstream:

$ git remote --verbose

origin git@github.com:USER/forking-workflow-exercise.git (fetch)
origin git@github.com:USER/forking-workflow-exercise.git (push)

$ git remote --verbose

origin git@github.com:cr-workshop-exercises/forking-workflow-exercise.git (fetch)
origin git@github.com:cr-workshop-exercises/forking-workflow-exercise.git (push)

$ git remote set-url origin git@github.com:USER/forking-workflow-exercise.git

Pull requests can be coupled with automated testing

We added an automated test here just for fun and so that you see that this is possible to do.

In this exercise, the test is silly. It will check whether the recipe contains both an ingredients
and an instructions section.

In this example the test failed:

Click on the “Details” link to see the details of the failed test:

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/pull-request-form.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/pull-request-form.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/all-checks-failed.png

How can this be useful?

The project can define what kind of tests are expected to pass before a pull request can
be merged.
The reviewer can see the results of the tests, without having to run them locally.

How does it work?

We added a GitHub Actions workflow to automatically run on each push or pull request
towards the main branch.

What tests or steps can you image for your project to run automatically with each pull
request?
How to update your fork with changes from upstream

This used to be difficult but now it is two mouse clicks: Navigate to your fork and notice how
GitHub tells you that your fork is behind. In my case, it is 9 commits behind upstream. To fix
this, click on “Sync fork” and then “Update branch”:

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/check-details.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/check-details.png

After the update my “branch is up to date” with the upstream repository:

How to approach other people’s repositories with ideas, changes, and
requests

Contributing very minor changes

Clone or fork+clone repository
Create a branch
Commit and push change
Open a pull request or merge request

If you observe an issue and have an idea how to fix it

Open an issue in the repository you wish to contribute to
Describe the problem

file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/fork-after-update.png
file:///home/runner/work/git-collaborative/git-collaborative/_build/pyppeteer/_images/fork-after-update.png

If you have a suggestion on how to fix it, describe your suggestion
Possibly discuss and get feedback
If you are working on the fix, indicate it in the issue so that others know that somebody is
working on it and who is working on it
Submit your fix as pull request or merge request which references/closes the issue

Motivation

Inform others about an observed problem
Make it clear whether this issue is up for grabs or already being worked on

If you have an idea for a new feature

Open an issue in the repository you wish to contribute to
In the issue, write a short proposal for your suggested change or new feature
Motivate why and how you wish to do this
Also indicate where you are unsure and where you would like feedback
Discuss and get feedback before you code
Once you start coding, indicate that you are working on it
Once you are done, submit your new feature as pull request or merge request which
references/closes the issue/proposal

Motivation

Get agreement and feedback before writing 5000 lines of code which might be
rejected
If we later wonder why something was done, we have the issue/proposal as reference
and can read up on the reasoning behind a code change

Summary

This forking workflow lets you propose changes to repositories for which you have no
write access.
This is the way that much modern open-source software works.
You can now contribute to any project you can view.

Hooks

 Objectives

Learn how to couple scripts to Git repository events.

Instructor note

10 min teaching/demonstration

Sometimes you would like Git events (commits, pushes, etc.) to trigger scripts which take
care of some tasks. Hooks are scripts that are executed before/after certain Git events.
They can be used to enforce nearly any kind of policy for your project. There are client-side
and server-side hooks.

Client-side hooks

You can find and edit them here:

pre-commit : before commit message editor (example: make sure tests pass)
prepare-commit-msg : before commit message editor (example: modify default messages)
commit-msg : after commit message editor (example: validate commit message pattern)
post-commit : after commit process (example: notification)
pre-rebase : before rebase anything (example: disallow rebasing published commits)
post-rewrite : run by commands that rewrite commits
post-checkout : after successful git checkout (example: generating documentation)
post-merge : after successful merge
pre-push : runs during git push before any objects have been transferred
pre-auto-gc : invoked just before the garbage collection takes place

See also https://pre-commit.com, a framework for managing and maintaining multi-language
pre-commit hooks.

Example for a pre-commit hook which checks whether a Python code is PEP 8-compliant
using pycodestyle:

Server-side hooks

You can typically edit them through a web interface on GitHub/GitLab.

pre-receive : before accepting any references
update : like pre-receive but runs once per pushed branch
post-receive : after entire process is completed

Typical use:

$ ls -l .git/hooks/

#!/usr/bin/env bash

ignore errors due to too long lines
pycodestyle --ignore=E501 myproject/

https://pre-commit.com/
https://www.python.org/dev/peps/pep-0008/
http://pycodestyle.pycqa.org/

Maintenance work
Automated tests
Refreshing of documentation/website
Sanity checks
Code style checks
Email notification
Rebuilding software packages

Actions, workflows, and continuous integration services

GitHub and GitLab let you define workflows/actions/recipes which are triggered by e.g. git
push or by a release (tag creation). They can be customized and almost any automation you
can think of becomes possible.

These services use hooks under the hood. These days, project are more likely to use these
higher-level services rather than Git hooks directly.

You can read more about these services here:

GitHub Actions
GitLab CI

In our projects we use these services to:

Build websites
Build documentation
Run tests
Create containers
Package and upload packages
Spellchecking

Non-bare and bare repositories

 Objectives

Understanding the difference between non-bare and bare repositories.
Being able to create a common repository for a group on our local computer or server.

Instructor note

10 min teaching/demonstration

Non-bare repository

A non-bare repository contains .git/ as well as a snapshot of your tracked files that you
can directly edit called the working tree (the actual files you can edit).

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/

This is where we edit and commit changes.
When we create a repository with git init , it is a non-bare, “normal”, repository.

Bare repository

A bare repository contains only the .git/ part, no files you can directly edit.
By convention the names of bare repositories end with .git to emphasize this.
We never do actual editing work inside a bare repository.
GitHub, GitLab, etc. store a bare repository.
You can also create a bare repository on your computer/server to store your private
repository.

If we have enough time, the instructor demonstrates how to create a bare repository on the
local computer:

✍️ Bare-1: Create and use a bare repository

Create a new local repository with git init .

Populate it with a file and a commit or two.
Create one or two branches.
Clone this repository on the same computer with either --bare or --mirror :

Inspect the bare repository.
Clone the bare repository:

Inside the clone inspect git remote -v .
Inside the clone create a commit and push the commit to origin .
The bare repository can be cloned several times and one can exercise pushing and
pulling changes.

 Keypoints

We do programming work inside non-bare repositories.
We can create a local common bare repository where we can push to and pull from.

$ cd /path/to/example
$ git init

$ git clone --bare /path/to/example /path/to/example-bare

$ git clone /path/to/example-bare /path/to/example-clone
$ cd /path/to/example-clone

Quick reference

Other cheatsheets

See the git-intro cheatsheet for the basics.

Interactive git cheatsheet
Very detailed 2-page git cheatsheet

Glossary

remote

Roughly, another git repository on another computer. A repository can be linked to several
other remotes.

push

Send a branch from your current repository to another repository

fetch

Update your view of another repository

pull

Fetch (above) and then merge

origin

Default name for a remote repository.

origin/NAME

A branch name which represents a remote branch.

main

Default name for main branch.

merge

Combine the changes on two branches.

conflict

When a merge has changes that affect the same lines, git can not automatically figure out
what to do. It presents the conflict to the user to resolve.

issue

Feature of web repositories that allows discussion related to a repository.

pull request

A GitHub/Gitlab feature that allows you to send a code suggestion using a branch, which
allows one-button merging. In Gitlab, called “merge request”.

https://coderefinery.github.io/git-intro/reference/
http://www.ndpsoftware.com/git-cheatsheet.html
https://aaltoscicomp.github.io/cheatsheets/git-the-way-you-need-it-cheatsheet.pdf

git hook

Code that can run before or after certain actions, for example to do tests before allowing
you to commit.

bare repository

A copy of a repository that only is only the .git directory: there are no files actually
checked out. Directory names usually like something.git

Commands we use

This excludes most introduced in the git-intro cheatsheet.

Setup:

git clone URL [TARGET-DIRECTORY] : Make a copy of existing repository at <url>,
containing all history.

Status:

git status : Same as in basic git, list status
git remote [-v] : List all remotes
git graph : see a detailed graph of commits. Create this command with git config --
global alias.graph "log --all --graph --decorate --oneline"

General work:

git switch BRANCH-NAME : Make a branch active.
git push [REMOTE-NAME] [BRANCH:BRANCH] : Send commits and update the branch on the

remote.
git pull [REMOTE-NAME] [BRANCH-NAME] : Fetch and then merge automatically. Can be

convenient, but to be careful you can fetch and merge separately.
git fetch [REMOTE-NAME] : Get commits from the remote. Doesn’t update local branches,

but updates the remote tracking branches (like origin/NAME).
git merge [BRANCH-NAME] : Updates your current branch with changes from another

branch. By default, merges to the branch is is tracking by default.
git remote add REMOTE-NAME URL : Adds a new remote with a certain name.

List of exercises

Full list

This is a list of all exercises and solutions in this lesson, mainly as a reference for helpers and
instructors. This list is automatically generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

https://coderefinery.github.io/git-intro/reference/

Instructor guide

Approximate schedule

Times here are in CE(S)T.

08:50 - 09:00 (10 min) Soft start and icebreaker question
09:00 - 09:15 (15 min) Recap Git, any HedgeDoc questions to highlight
09:15 - 09:25 (10 min) Concepts around collaboration

Explain terms: Pull, push, clone, fork. Focus on pull and not fetch.
Focus more on clone and less on generating from templates and importing.

09:25 - 10:00 (35 min) Collaborating within the same repository
Exercise (incl preparation)

10:00 - 10:10 (10 min) Break
10:10 - 10:30 (20 min) Collaborating within the same repository

Demo and Q/A
10:30 - 11:00 (30 min) Practicing code review
11:00 - 12:00 (60 min) Break
12:00 - 12:50 (50 min) Distributed version control and forking workflow

Concepts and what are exercise outcomes
Exercise

12:50 - 13:00 (10 min) Break
13:00 - 13:30 (30 min) Discussion, demonstration, Q&A, feedback, what to expect next
week

Preparing exercises within exercise groups

Exercise leads typically prepare exercise repositories for the exercise group (although the
material speaks about “maintainer” who can also be one of the learners). Preparing the first
exercise (centralized workflow) will take more time than preparing the second (forking
workflow). Most preparation time is not the generating part but will go into communicating
the URL to the exercise group, communicating their usernames, adding them as
collaborators, and waiting until everybody accepts the GitHub invitation to join the newly
created exercise repository.

Preparing exercises for the live stream

What instructors need to do at least 1 day before the workshop

This takes 30-60 minutes to set up. Allocate the time for this before the workshop.
Make sure to remove all participants from a previous workshop from these two places:

https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants
https://github.com/orgs/cr-workshop-exercises/people

https://coderefinery.github.io/git-collaborative/concepts/
https://coderefinery.github.io/git-collaborative/same-repository/
https://coderefinery.github.io/git-collaborative/same-repository/
https://coderefinery.github.io/git-collaborative/code-review/
https://coderefinery.github.io/git-collaborative/distributed/
https://coderefinery.github.io/git-collaborative/distributed/#exercise-preparation
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants
https://github.com/orgs/cr-workshop-exercises/people

We create the exercises in an organization (not under your username) so that you can give
others admin access to add collaborators. Also this way you can then fork yourself if
needed.
All exercise repositories can be created from https://github.com/coderefinery/recipe-
book-template by git clone --mirror from the template followed by git push --mirror
towards the exercise repository.
We have created two versions of each a day in advance to signal which one might end up
being discussed on recording/stream:

centralized-workflow-exercise-recorded

centralized-workflow-exercise

forking-workflow-exercise-recorded

forking-workflow-exercise

Protect the default branch of the two centralized-* repositories (but this can also be
done on stream as the very first step if you are sure you will remember as instructor).

What to communicate to learners at least 1 day before the workshop

Example email from a previous workshop

How should learners request access

This is also in the email template above but they need to:

Open an issue at https://github.com/cr-workshop-exercises/access-requests/issues/new?
template=access-request.md
Accept invitation from GitHub sent to their email address (that GitHub knows about).
“Unwatch” both these repositories by clicking the “Unwatch” button (top middle of the
screen) and then select “Participating and mentions”:

https://github.com/cr-workshop-exercises/centralized-workflow-exercise
https://github.com/cr-workshop-exercises/centralized-workflow-exercise-recorded

How to add learners to the team stream-exercise-participants

You need to be “owner” of https://github.com/orgs/cr-workshop-exercises/teams/stream-
exercise-participants to be able to add people to the team.

1. Check https://github.com/cr-workshop-exercises/access-requests/issues. Any open issue
means the person hasn’t been added yet.

2. Assign one issue to yourself. This way other organizers know that this is being worked on.
3. Add person to https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-

participants

Click on “Add member” -> “Invite” -> “Add (username) to stream-exercise-participants”

https://github.com/coderefinery/recipe-book-template
https://github.com/coderefinery/recipe-book-template
https://coderefinery.github.io/2025-03-25-workshop/communication/#getting-ready-for-day-2-and-3-of-coderefinery-workshop
https://github.com/cr-workshop-exercises/access-requests/issues/new?template=access-request.md
https://github.com/cr-workshop-exercises/access-requests/issues/new?template=access-request.md
https://github.com/cr-workshop-exercises/centralized-workflow-exercise
https://github.com/cr-workshop-exercises/centralized-workflow-exercise-recorded
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants
https://github.com/cr-workshop-exercises/access-requests/issues
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants
https://github.com/orgs/cr-workshop-exercises/teams/stream-exercise-participants

Do not add/invite the person anywhere else, not as collaborator to any exercise repo
directly. Only add/invite them into the team “stream-exercise-participants”. Motivation:
This way we give instructors the control over when the exercise can start. Otherwise
learners might merge changes before the lesson and thus change the example and
confuse instructors and learners.

4. Close the issue on https://github.com/cr-workshop-exercises/access-requests/issues with
the following comment (feel free to adapt it):

Why we teach this lesson

In order to collaborate efficiently using Git, it’s essential to have a solid understanding of how
remotes work, and how to contribute changes through pull requests or merge requests. The
git-intro lesson teaches participants how to work efficiently with Git when there is only one
developer (more precisely: how to work when there are no remote Git repositories yet in the
picture). This lesson dives into the collaborative aspects of Git and focuses on the possible
collaborative workflows enabled by web-based repository hosting platforms like GitHub.

This lesson is meant to directly benefit workshop participants who have prior experience
with Git, enabling them to put collaborative workflows involving code review directly into
practice when they return to their normal work. For novice Git users (who may have learned
a lot in the git-intro lesson) this lesson is somewhat challenging, but the lesson aims to
introduce them to the concepts and give them confidence to start using these workflows
later when they have gained some further experience in working with Git.

Intended learning outcomes

By the end of this lesson, learners should:

Understand the concept of remotes
Be able to describe the difference between local and remote branches
Be able to describe the difference between centralized and forking workflows
Know how to use pull requests or merge requests to submit changes to another projects

Thanks! I have added you to the collaborative exercise team.

What you should do before the exercise starts:

1) You will get an invitation from GitHub to your email address (that GitHub
 knows about). Please accept that invitation so that you can participate in
 the collaborative exercise.

2) To make sure you don't get too many emails during the exercise, don't forget
 to "unwatch" both
 https://github.com/cr-workshop-exercises/centralized-workflow-exercise and
 https://github.com/cr-workshop-exercises/centralized-workflow-exercise-recorded.
 To "unwatch", go to the repository and click the "Unwatch" button (top
 middle of the screen) and then select "Participating and mentions".

https://github.com/cr-workshop-exercises/access-requests/issues
https://coderefinery.github.io/git-intro/

Know how to reference issues in commits or pull/merge requests and how to auto-close
issues
Know how to update a fork
Be able to contribute in code review as submitter or reviewer

Interesting questions you might get

If participants run git graph they might notice origin/HEAD . This has been omitted from
the figures to not overload the presentation. This pointer represents the default branch of
the remote repository.

Timing

The centralized collaboration episode is densest and introduces many new concepts, so at
least an hour is required for it.
The forking-workflow exercise repeats familiar concepts (only introduces forking and
distributed workflows), and it takes maybe half the time of the first episode.
The “How to contribute changes to somebody else’s project” episode can be covered
relatively quickly and offers room for discussion if you have time left. However, this
should not be skipped as this is perhaps the key learning outcome.

Typical pitfalls

Difference between pull and pull requests

The difference between pull and pull requests can be confusing, explain clearly that pull
requests or merge requests are a different mechanism specific to GitHub, GitLab, etc.

Pull requests are from branch to branch, not from commit to branch

The behavior that additional commits to a branch from which a pull request has been created
get appended to the pull request needs to be explained.

Other practical aspects

In in-person workshops participants really have to sit next to someone, so that they can
see the screens. From the beginning.
Emphasize use of git graph a lot, just like in the git-solo lesson.

