
 / Introduction to version control with Git documentation

Introduction to version control with Git - Why we
want to track versions and how to go back in
time to a working version

We rewrote this lesson in February and March 2024

If you are looking for the previous version, you can browse the 2023 version of this
lesson.

This is the introductory lesson to version control using Git.

We start with an existing repository on the web to visually explain the basic concepts of
version control. We later move to a local repository. Our goal there is not only to be able to
apply changes to an existing repository but to also be able to turn own projects into Git
repositories and to share them with others.

In the separate collaborative Git lesson, we focus more on the collaboration and the use of
remote repositories. We try to stick to simple workflows, just enough for researchers who
are not obsessed with Git to be able to work well.

The goals of the module as a whole are that the learner will feel comfortable about
committing changes, branching, and merging.

⚙ Prerequisites

We offer several options to go through the material: on the web, in an editor, or in the
terminal. Please see the installation instructions. If you wish to follow in the terminal and
are new to the command line, we recorded a short shell crash course.

We recommend to have a GitHub account. Why GitHub? Also GitLab and Bitbucket
would allow similar workflows and basically everything that we will discuss is
transferable. With this material and these exercises we do not implicitly endorse the
company GitHub. We have chosen to demonstrate a number of concepts using examples
with GitHub because it is currently the most popular web platform for hosting Git
repositories and the chance is high that you will interact with GitHub-based repositories
even if you choose to host your Git repository on another service.

https://coderefinery.github.io/git-intro/branch/2023-version/
https://coderefinery.github.io/git-intro/branch/2023-version/
https://git-scm.com/
https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/installation/
https://youtu.be/xbTTDLA3txI
https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://github.com/
https://github.com/
https://github.com/

Motivation

 Objectives

Make sure nobody leaves the workshop without starting to use some form of version
control.
Discuss the reasons why we advocate distributed version control.

Instructor note

15 min discussion/demonstration

Git is all about keeping track of changes

We will learn how to keep track of changes first in the web browser. Below are screenshots
of tracked changes with Git (from this example repository):

Web browser, GitHub view

Later also using the terminal or the editor (the same example repository):

https://github.com/bast/runtest/commits/main/runtest/run.py
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-log-github.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-log-github.png
https://github.com/bast/runtest/commits/main/runtest/run.py

The same as above, but the terminal view

Why do we need to keep track of versions?

Problem: If you have to identify and find your code from 17 days ago, can you?

Version control is an answer to the following questions (do you recognize some of them?):

“It broke … hopefully I have a working version somewhere?”
“Can you please send me the latest version?”
“Where is the latest version?”
“Which version are you using?”
“Which version have the authors used in the paper I am trying to reproduce?”
“Found a bug! Since when was it there?”
“I am sure it used to work. When did it change?”
“My laptop is gone. Is my thesis now gone?”

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-log-terminal.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-log-terminal.png

Features: roll-back, branching, merging, collaboration

Problem: Your code worked two days ago, but is giving an error now. You don’t know what
you changed.

Problem: You and your colleague want to work on the same code at the same time.

Roll-back: you can always go back to a previous version and compare
Branching and merging:

Work on different ideas at the same time
Different people can work on the same code/project without interfering
You can experiment with an idea and discard it if it turns out to be a bad idea

Image created using https://gopherize.me/ (inspiration).

Collaboration: review, compare, share, discuss
Example network graph

Reproducibility

Problem: Someone asks you about your results from 5 years ago. Can you get the same
results now?

How do you indicate which version of your code you have used in your paper?

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
https://github.com/coderefinery/git-intro/network

When you find a bug, how do you know when precisely this bug was introduced (Are
published results affected? Do you need to inform collaborators or users of your code?).

With version control we can “annotate” code (browse this example online):

Example of a git-annotated code with code and history side-by-side.

Talking about code

Problem: You want to show someone a few lines from one of your projects.

Which of these two is more practical?

“Clone the code, go to the file ‘src/util.rs’, and search for ‘time_iso8601’”. Oh! But make
sure you use the version from August 2023.”
Or I can send you a permalink:

https://github.com/networkx/networkx/blame/main/networkx/algorithms/boundary.py
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-annotate.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-annotate.png
https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44

Permalink that points to a code portion.

What we typically like to snapshot

Software (this is how it started but Git/GitHub can track a lot more)
Scripts
Documents (plain text files much better suitable than Word documents)
Manuscripts (Git is great for collaborating/sharing LaTeX or Quarto manuscripts)
Configuration files
Website sources
Data

💬 Discussion

In this example somebody tried to keep track of versions without a version control system
tool like Git. Discuss the following directory listing. What possible problems do you
anticipate with this kind of “version control”:

✔︎Solution

Giving a version to a collaborator and merging changes later with own changes
sounds like lots of work.
What if you discover a bug and want to know since when the bug existed?

Difficulties of version control

Despite the benefits, let’s be honest, there are some difficulties:

myproject-2019.zip
myproject-2020-February.zip
myproject-2021-August.zip
myproject-2023-09-19-working.zip
myproject-2023-09-21.zip
myproject-2023-09-21-test.zip
myproject-2023-09-21-myversion.zip
myproject-2023-09-21-newfeature.zip
...
(100 more files like these)

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/code-portion.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/code-portion.png
https://quarto.org/

One more thing to learn (it’s probably worth it and will save you more time in the long
run; basic career skill).
Difficult if your collaborators don’t want to use it (in the worst case, you can version
control on your side and email them versions).
Advanced things can be difficult, but basics are often enough (ask others for help when
needed).

Why Git and not another tool?

Easy to set up: no server needed.
Very popular: chances are high you will need to contribute to somebody else’s code
which is tracked with Git.
Distributed: good backup, no single point of failure, you can track and clean-up changes
offline, simplifies collaboration model for open-source projects.
Important platforms such as GitHub, GitLab, and Bitbucket build on top of Git.

However, any version control is better than no version control and it is OK to prefer a
different tool than Git such as Subversion, Mercurial, Pijul, or others.

Configuring Git command line and editor

We have a longer version of this in the installation instructions. But for clarity, we will review
the most important parts here.

You don’t need to set these if you work only through the GitHub web interface. If you use VS
Code or other editors or integrated development environments, the editor might prompt you
to set these up.

These configuration settings are saved in a file called .gitconfig in your home directory. If
this file exists, editors like VS Code will use this configuration.

If you want to see your configuration settings, you can use the command (--show-origin
means it shows the file where each setting is defined):

Name and email address for Git commit metadata

Git commits carry metadata about the author and two things you will always need to define
somewhere are:

$ git config --list --show-origin

$ git config --global user.name "Your Name"
$ git config --global user.email yourname@example.com

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://pijul.org/
https://coderefinery.github.io/installation/git-in-terminal/

For the email address we recommend to use the one you use for your GitHub account. If you
prefer to not use it, you can instead use YOUR_GITHUB_USERNAME@users.noreply.github.com as
the email address (replace YOUR_GITHUB_USERNAME). This means that nobody can write to this
email address, but GitHub will still be able to connect your contributions with your GitHub
account.

Note that these can, in theory, be anything: this is just data, not a registration or identity
requirement.

Default branch name

The default branch name in Git has been master for a long time, but it is changing to main
in many places. We recommend to set it to main for new repositories that you create locally:

Useful alias for the command line

We recommend to define an alias (shortcut) in Git, to be able to nicely visualize branch
structure in the terminal without having to remember a long Git command:

We have an own section about aliases: Aliases and configuration.

Default text editor for commit messages

Git sometimes needs to start a text editor for you to enter messages (unless you create
commits from inside an editor or on the web). This may have already been set to something
(like VS Code), but if not nano is usually a safe choice:

The installation instructions text editor page gives ways to set other editors, or do a web
search for “git set editor to [editor name]”.

Authenticating to GitHub: SSH or HTTPS or VS Code?

How does GitHub know who you are? We discuss here three options:

$ git config --global init.defaultbranch main

$ git config --global alias.graph "log --all --graph --decorate --oneline"

$ git config --global core.editor nano

https://coderefinery.github.io/installation/editors/

SSH is the classic method, using Secure Shell Protocol remote connection keys.
HTTPS works with the Git Credential Manager, which is an extra add-on that works
easily in Windows and Mac.
VS Code editor can authenticate with GitHub using its own authentication method.

Read how to install them from the installation instructions.

Test which one you should use:

Copy and browse an existing project

In this episode, we will look at an existing repository to understand how all the pieces work
together. Along the way, we will make a copy (a fork) of the repository for us, which will be
used for our own changes in the next episode.

We used to start by directly going and creating a repository from scratch. This was
abstract and hard to understand.
Instead, we’ll show you all the cool stuff in a Git repository first, and then start adding
files.
We use an example recipe book we created just for this course.
By the end of the course, you’ll know how to contribute your own recipes to it.

 Objectives

See a real Git repository and understand what is inside of it.
Understand how version control allows advanced inspection of a repository.

Command line: SSH Command line: HTTPS VS Code

Try this command:

If it returns Hi USERNAME! You've successfully authenticated, ... , then SSH is
configured and the following steps will work with the SSH cloning.

See our installation instructions to set up SSH access.

From now on, if you know that SSH works, you should always select SSH as the clone
URL from GitHub, or translate the URL to start with the right thing yourself:
git@github.com: (with the :).

$ ssh -T git@github.com

https://en.wikipedia.org/wiki/Secure_Shell
https://coderefinery.github.io/installation/ssh/
https://coderefinery.github.io/installation/ssh/

See how Git allows multiple people to collaborate relatively easily.
See the big picture instead of remembering a bunch of commands.

GitHub, VS Code, Command line, and more

We offer three different paths for this exercise:

GitHub (this is the one we will demonstrate on day 1)
VS Code (if you prefer to follow along using an editor; we will return to this on day 2)
Command line (for people comfortable with the command line; you will see more of this
on day 2)

In the future we’ll add more paths, for example Jupyter and RStudio (contributions
welcome!).

Creating a copy of the repository by “forking”

A repository is a collection of files in one directory tracked by git. A GitHub repository is
GitHub’s copy, which adds things like access control. Each GitHub repository is owned by a
user or organization, who controls access.

Illustration of forking a repository on GitHub.

First, we need to make our own copy of the exercise repository. This will become important
later, when we make our own changes.

1. Go to the repository view on GitHub:

https://github.com/cr-workshop-exercises/recipe-book: you can use this one if you
don’t want your fork and contributions to be visible on the stream or the recording
https://github.com/cr-workshop-exercises/recipe-book-recorded: we will use this one
for the demonstration which is streamed and recorded

https://github.com/coderefinery/git-intro/issues/458
https://github.com/coderefinery/git-intro/issues/458
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/fork.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/fork.png
https://github.com/cr-workshop-exercises/recipe-book
https://github.com/cr-workshop-exercises/recipe-book-recorded

2. First, on GitHub, click the button that says “Fork”. It is towards the top-right of the
screen:

3. You should shortly be redirected to your copy of the repository USER/recipe-book.

At all times you should be aware of if you looking at your repository or the CodeRefinery
upstream repository.

Your repository: https://github.com/USER/recipe-book
CodeRefinery upstream repository: https://github.com/cr-workshop-exercises/recipe-
book

Exercise

Work on this by yourself or in your team.

Instructor note

Before starting the exercise session show how to fork the repository to own account
(above).

✍️ Exercise: Browsing an existing project (25 min)

Browse the recipe-book project (introduced above) and explore commits and branches.
Take notes and prepare questions. The hints are for the GitHub path in the browser.

1. Browse the commit history: Are commit messages understandable? (Hint: “Commit
history”, the timeline symbol, above the file list)

2. Compare the commit history with the network graph (“Insights” -> “Network”). Can
you find the branches?

GitHub VS Code Command line

You only need to open your own view, as described above. The browser URL should look
like https://github.com/USER/recipe-book , where USER is your GitHub username.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/forking.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/forking.png

3. How can you find out when a recipe was last modified?
4. How many changes did the Guacamole recipe receive (you find it under “sides”)? Try to

click on some of the commits to see what changed. (Hint: “History” in the view of a
single file)

5. Which recipes include the ingredient “salt”? (Hint: the GitHub search. From the
repository view, it should offer the filter “repo:USER/recipe-book” by default. What if
you add a search term?)

6. In the Guacamole recipe, find out who modified each line last and when (click on file,
then click “Blame” button). Find out who added the cilantro and in which commit.
(Hint: “Blame” view in the file view)

7. Can you use these recipes yourself? Are you allowed to share modifications? (Hint:
look for a license file)

8. Browse issues and pull requests in the upstream repository (the repository you forked
from). Any idea what these might be good for? (Hint: tabs in the repository view)

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.

Solution and walk-through

(1) Basic browsing

The most basic thing to look at is the history of commits.

This is visible from a button in the repository view. We see every change, when, and who
has committed.
Every change has a unique identifier, such as 554c187 . This can be used to identify both
this change, and the whole project’s version as of that change.
Clicking on a change in the view shows more.

GitHub VS Code Command line

Click on the timeline symbol in the repository view:

(2) Compare commit history with network graph

The commit history we saw above looks linear: one commit after another. But if we look at
the network view, we see some branches and merges. We’ll see how to do these later. This is
another one of the basic Git views.

(3) When was a recipe last modified?

We see the history for the whole repository, but we can also see it for a single file.

GitHub VS Code Command line

In a new browser tab, open the “Insights” tab, and click on “Network”. You can hover
over the commit dots to see the person who committed and how they correspond with
the commits in the other view:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/history1.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/history1.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/network.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/network.png

(4) How many changes did the Guacamole recipe receive?

According to the view above, it seems to have five changes (as of 2024-03-07). This could
change later on.

(5) Which recipes include the ingredient “salt”

Version control makes it very easy to find all occurrences of a single word. This is useful for
things like finding where functions or variables are defined or used.

GitHub VS Code Command line

Navigate to the file view: Main page → sides directory → guacamole.md. Click the
“History” button near the top right:

GitHub VS Code Command line

We go to the main recipe book view. We click the Search magnifying class at the very
top, type “salt”, and click enter. We see every instance, including the context.

 Searching in a forked repository will not work instantaneously!

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/file-history.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/file-history.png

(6) Who modified each line last and when?

This is called the “annotate” or “blame” view. The name “blame” is very unfortunate, but it is
the standard term for historical reasons for this functionality and it is not meant to blame
anyone.

It usually takes a few minutes before one can search for keywords in a forked
repository since it first needs to build the search index the very first time we search.
Start it, continue with other steps, then come back to this.

GitHub VS Code Command line

From a recipe view, change preview to “Blame” towards the top-left. To get the actual
commit, click on the commit message.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/search1.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/search1.png

(7) Can you use these recipes yourself? Are you allowed to share
modifications?

Look at the file LICENSE .
It says it is “Creative Commons Zero 1.0”, which is equivalent to public domain. You can
use them without conditions.
Note the GitHub view of the file LICENSE gives a nice summary of what it means. Try it
out:

(8) Browse issues and pull requests in the upstream repository

This can only be done through the GitHub view. Go to the main repository cr-workshop-
exercises/recipe-book, (not your fork): https://github.com/cr-workshop-exercises/recipe-
book. Issues and Pull requests are different for each GitHub copy.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/license.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/license.png
https://github.com/cr-workshop-exercises/recipe-book
https://github.com/cr-workshop-exercises/recipe-book
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/annotate1.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/annotate1.png

Click on the “Issues” tab. These are notes that people have added, which allow discussion
about the project. Often they are used to communicate problems or ideas.
Click on the “Pull requests” tab. This allows anyone to propose changes, but only the
repository owners can accept.

Summary

Git allowed us to understand this simple project much better than we could, if it was just
a few files on our own computer.
It was easy to share the project with the course.
By forking the repository, we created our own copy. This is important for the next
episode, where we will make changes to our copy.

Recording changes

The first and most basic task to do in Git is record changes using commits. In this part, we
will record changes in two ways: on a new branch (which supports multiple lines of work at
once), and directly on the “main” branch (which happens to be the default branch here).

 Objectives

Record new changes to our own copy of the project.
Understand adding changes in two separate branches.
See how to compare different versions.

Background

In the previous episode we have browsed an existing repository and saw commits and
branches.
Each commit is a snapshot of the entire project at a certain point in time and has a unique
identifier (hash) .
A branch is a line of development, and the main branch or master branch are often the
default branch in Git.
A branch in Git is like a sticky note that is attached to a commit. When we add new
commits to a branch, the sticky note moves to the new commit.
Tags are a way to mark a specific commit as important, for example a release version.
They are also like a sticky note, but they don’t move when new commits are added.

What if two people, at the same time, make two different changes? Git can merge them together
easily. Image created using https://gopherize.me/ (inspiration).

Exercise

Illustration of what we want to achieve in this exercise.

We offer three different paths of how to do this exercise. For the CodeRefinery workshop
day 1, we use and demonstrate the GitHub path only and recommend you do that (you can
get experience with the other paths on day 2).

✍️ Exercise: Practice creating commits and branches (20 min)

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/branches.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/branches.png

1. Make sure that you now work on your fork of the recipe-book repository
(USER/recipe-book , not cr-workshop-exercises/recipe-book)

2. First create a new branch and then add a recipe to the branch and commit the change.
3. In a new commit, modify the recipe you just added.
4. Switch to the main branch and modify a recipe there.
5. Browse the network and locate the commits that you just created (“Insights” ->

“Network”).
6. Compare the branch that you created with the main branch. Can you find an easy

way to see the differences?
7. Can you find a way to compare versions between two arbitrary commits in the

repository?
8. Try to rename the branch that you created and then browse the network again.
9. Try to create a tag for one of the commits that you created (on GitHub, create a

“release”).

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.

Solution and walk-through

(1) Make sure you are on your fork

You want to see your username in the URL and you want to see the “forked from …” part.

(2) Create a branch and add a recipe to the branch

A recipe template is below. This format is called “Markdown”, but it doesn’t matter right now.
You don’t have to use this particular template.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/fork1.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/fork1.png

There is a main branch that is default. We want to create a different branch for our new
commit, because we will merge it later. Commit is the verb to describe recording more
changes, and also the name of the thing you make. A commit is identified by something such
as 554c187 .

Recipe name

Ingredients

- Ingredient 1
- Ingredient 2

Instructions

- Step 1
- Step 2

GitHub VS Code Command line

1. Where it says “main” at the top left, click, enter a new branch name new-recipe ,
click on the offer to create the new branch (“Create branch new-recipe from main”).

2. Change to some sub-directory, for example sides .
3. Make sure you are still on the new-recipe branch (it should say it at the top), and

click “Add file” → “Create new file” from the upper right.
4. Enter a filename where it says “Name your file…”, with a .md at the end. Example:

mixed-nuts.md .
5. Enter the recipe. You can use the template above.
6. Click “Commit changes”
7. Enter a commit message. Then click “Commit changes”.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-create-branch.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-create-branch.png

(3) Modify the recipe with a new commit

(4) Switch to the main branch and modify a recipe there

(5) Browse the commits you just made

Let’s look at what we did. Now, the main and new-recipe branches have diverged: both
have some modifications. Try to find the commits you created.

(6) Compare the branches

Comparing changes is an important thing we need to do. When using the GitHub view only,
this may not be so common, but we’ll show it so that it makes sense later on.

You should appear back at the file browser view, and see your new recipe there.

GitHub VS Code Command line

This is similar to before, but we click on the existing file to modify.

1. Click on your new recipe, for example mixed-nuts.md .
2. Click the edit button, the pencil icon at top-right.
3. Follow the “Commit changes” instructions as in the previous step.

GitHub VS Code Command line

1. Go back to the main repository page (your user’s page).
2. In the branch switch view (top left above the file view), switch to main .
3. Modify another recipe that already exists, following the pattern from above. Don’t

modify the one you just created (but it shouldn’t even be visible on the main
branch).

GitHub VS Code Command line

Insights tab → Network view (just like we have done before).

(7) Compare two arbitrary commits

This is similar to above, but not only between branches.

(8) Renaming a branch

(9) Creating a tag

Tags are a way to mark a specific commit as important, for example a release version. They
are also like a sticky note, but they don’t move when new commits are added.

GitHub VS Code Command line

A nice way to compare braches is to add /compare to the URL of the repository, for
example (replace USER): https://github.com/USER/recipe-book/compare

GitHub VS Code Command line

Following the /compare -trick above, one can compare commits on GitHub by adjusting
the following URL: https://github.com/USER/recipe-book/compare/VERSION1..VERSION2

Replace USER with your username and VERSION1 and VERSION2 with a commit hash or
branch name. Please try it out.

GitHub VS Code Command line

Branch button → View all branches → three dots at right side → Rename branch.

GitHub VS Code Command line

Click on the branch switcher, and then on “Tags”, then on “View all tags”, then “Create a
new release”:

Discussion

In this part, we saw how we can make changes to our files. With branches, we can track
several lines of work at once, and can compare their differences.

You could commit directly to main if there is only one single line of work and it’s only
you.
You could commit to branches if there are multiple lines of work at once, and you don’t
want them to interfere with each other.
Tags are useful to mark a specific commit as important, for example a release version.
In Git, commits form a so-called “graph”. Branches are tags in Git function like sticky
notes that stick to specific commits. What this means for us is that it does not cost any
significant disk space to create new branches.
Not all files should be added to Git. For example, temporary files or files with sensitive
information or files which are generated as part of the build process should not be added
to Git. For this we use .gitignore (more about this later: What to avoid).
Unsure on which branch you are or what state the repository is in? On the command line,
use git status frequently to get a quick overview.

Merging changes and contributing to the project

Git allows us to have different development lines where we can try things out. It also allows
different people to work on the same project at the same. This means that we have to
somehow combine the changes later. In this part we will practice this: merging.

 Objectives

What GitHub calls releases are actually tags in Git with additional metadata. For the
purpose of this exercise we can use them interchangeably.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-create-tag.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-create-tag.png

Understand that on GitHub merging is done through a pull request. Think of it as a
change proposal.
Create and merge a pull request within your own repository.
Understand (and optionally) do the same across repositories, to contribute to the
upstream public repository.

Instructor note

10 min introduction and setup
25 min exercise
15 min discussion

Background

In the last episode, we added a new recipe on a branch. This allows us to test it before it
becomes “live”.
Now, we want to bring that change into the “main” branch.
We will find it’s not that hard! But you do have to keep track of the steps and make sure
that you are careful about where a change is added.

Exercise

In this exercise, we will show how we can propose changes and merge changes within our
own repository. Optionally, you can propose a recipe to the upstream recipe book - which
shows the true purpose of this. But this is only a preview and we will practice collaboration
much more in the collaborative Git lesson.

Illustration of what we want to achieve in this exercise.

https://coderefinery.github.io/git-collaborative/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/merging.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/merging.png

We offer three different paths of how to do this exercise. For the CodeRefinery workshop
day 1, we use and demonstrate the GitHub path only and recommend you do that. The
exercise text below has some GitHub-specific notes, but most is possibly with any path.

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.

GitHub Local (VS Code, Command line)

First, we make something called a pull request, which allows review and commenting
before the actual merge.

✍️ Exercise: Merging branches with pull requests (20 min)

We assume that in the previous exercise you have created a new branch with a
recipe. In our previous example, it is called new-recipe . If not, create the branch first
and add a recipe to your new branch, see Recording changes.

We provide basic hints. You should refer to the solution as needed.

1. Navigate to your branch from the previous episode (hint: the same branch view
we used last time).

2. Begin the pull request process (hint: There is a “Contribute” button in the branch
view).

3. Add or modify the pull request title and description, and verify the other data. In
the pull request verify the target repository and the target branch. Make sure that
you are merging within your own repository. GitHub: By default, it will offer to
make the change to the upstream repository, cr-workshop-exercises . You should
change this, you shouldn’t contribute your test recipe upstream yet. Where it
says base repository , select your own user’s repository.

4. Create the pull request by clicking “Create pull request”. Browse the network
view to see if anything has changed yet.

5. Merge the pull request, or if you are not on GitHub you can merge the branch
locally. Browse the network again. What has changed?

6. Find out which branches are merged and thus safe to delete. Then remove them
and verify that the commits are still there, only the branch labels are gone (hint:
you can delete branches that have been merged into main).

7. Optional: Try to create a new branch with a new change, then open a pull request
but towards the central repository. We will later merge few of those. (Hint: this is
mostly the same as above, for the GitHub path. But, you set the base repository
as CodeRefinery. You might need to compare across forks.)

Solution and walk-through

(1) Navigate to your branch

Before making the pull request, or doing a merge, it’s important to make sure that you are on
the right branch. Many people have been frustrated because they forgot this!

(2) Begin the pull request process

In GitHub, the pull request is the way we propose to merge two branches together. We start
the process of making one.

GitHub VS Code Command line

On GitHub make sure you are on the branch you want to merge from:

GitHub VS Code Command line

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-navigate-to-branch.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-navigate-to-branch.png

(3) Fill out and verify the pull request

Check that the pull request is directed to the right repository and branch and that it contains
the changes that you meant to merge.

GitHub VS Code Command line

Things to check:

Base repository: this should be your own
Title: make it descriptive
Description: make it informative
Scroll down to see commits: are these the ones you want to merge?
Scroll down to see the changes: are these the ones you want to merge?

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-contribute.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-contribute.png

(4) Create the pull request

We actually create the pull request. Don’t forget to navigate to the Network view after
opening the pull request. Note that the changes proposed in the pull request are not yet
merged.

(5) Merge the pull request

Now, we do the actual merging. We see some effects now.

This screenshot only shows the top part. If you scroll down, you can see the commits and
the changes. We recommend to do this before clicking on “Create pull request”.

GitHub VS Code Command line

Click on the green button “Create pull request”.

If you click on the little arrow next to “Create pull request”, you can also see the option
to “Create draft pull request”. This will be interesting later when collaborating with
others. It allows you to open a pull request that is not ready to be merged yet, but you
want to show it to others and get feedback.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-comparing-changes.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-comparing-changes.png

(6) Delete merged branches

Before deleting branches, first check whether they are merged.

If you delete an un-merged branch, it will be difficult to find the commits that were on that
branch. If you delete a merged branch, the commits are now also part of the branch where
we have merged to.

GitHub VS Code Command line

Review it again (commits and changes), and then click “Merge pull request”.

After merging, verify the network view. Also navigate then to your “main” branch and
check that your new recipe is there.

GitHub VS Code Command line

One way to delete the branch is to click on the “Delete branch” button after the pull
request is merged:

But what if we forgot? Then navigate to the branch view:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-merged.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-merged.png

(7) Contribute to the original repository with a pull request

Remember, this is an advanced step. If you do this, you are donating a recipe to everyone.

In the overview we can see that it has been merged and we can delete it:

GitHub VS Code Command line

Now that you know how to create branches and opening a pull request, try to open a
new pull request with a new change but this time the base repository should be the
upstream one.

In other words, you now send a pull request across repositories: from your fork to the
original repository.

Another thing that is different now is that you might not have permissions to merge the
pull request. We can then together review and browse the pull request.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-branches.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-branches.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-branches-overview.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/github-branches-overview.png

Resolving a conflict (demonstration)

A conflict is when Git asks humans to decide during a merge which of two changes to keep if
the same portion of a file has been changed in two different ways on two different branches.

We will practice conflict resolution in the collaborative Git lesson.

Here we will only demonstrate how to create a conflict and how to resolve it, all on GitHub.
Once we understand how this works, we will be more confident to resolve conflicts also in
the command line.

How to create a conflict (please try this in your own time and just watch now):

Create a new branch from main and on it make a change to a file.
On main , make a different change to the same part of the same file.
Now try to merge the new branch to main . You will get a conflict.

How to resolve conflicts:

On GitHub, you can resolve conflicts by clicking on the “Resolve conflicts” button. This
will open a text editor where you can choose which changes to keep. Make sure to
remove the conflict markers. After resolving the conflict, you can commit the changes and
merge the pull request.
Sometimes a conflict is between your change and somebody else’s change. In that case,
you might have to discuss with the other person which changes to keep.

How to avoid conflicts:

We will talk about it in the collaborative Git lesson.

Summary

We learned how to merge two branches together.
When is this useful? This is not only useful to combine development lines in your own
work. Being able to merge branches also forms a basis for collaboration.
Branches which are merged to other branches are safe to delete, since we only delete the
“sticky note” next to a commit, not the commits themselves.

Cloning a Git repository and working locally

If you’ve been following the main path, you have just had interacted with repositories on
GitHub. This might not be what you usually do, so now we move to working on your own
computer.

 Objectives

https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/git-collaborative/

We are able to clone a repository from the web and modify it locally.
We can do the same things we did before (commit, branch, merge), but locally.
We get a feeling for remote repositories (more later).

Instructor note

10 min introduction and setup
25 min exercise
15 min discussion

What is in a Git repository and what are we cloning?

Illustration of cloning a repository to a local computer.

Git repository:

Contains all the files and directories of a project.
Contains the complete history of all changes (commits) to these files and directories.
Each commit is a snapshot of the entire project at a certain point in time and has a unique
identifier (“hash”).
Sometimes it contains multiple branches and tags.
All the commits and history of a local repository are stored in a directory called .git
which is located at the root of the repository.

Cloning:

Copying (downloading) the entire repository with all commits, branches, and tags to your
computer.
It is a full backup of the repository, including all history.
You can then work on your local clone of the repository.
Changes on local clone will not automatically appear in the repository where we cloned
from. We have to actively “push” them there (we will practice this in a later episode: How
to turn your project to a Git repo and share it).

https://coderefinery.github.io/git-collaborative/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/clone.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/clone.png

Exercise

Work on this by yourself or in your teams. Conceptually this episode should seem familiar,
from the browser-based exercises we did yesterday.

We offer the Command Line and VS Code paths for this exercise. GitHub isn’t an option in
this episode, since that is what we already demonstrated in Recording changes and Merging
changes and contributing to the project and since the point of this episode is to work locally.

It is also possible to use the command line (terminal) from inside VS Code.

✍️ Exercise: Cloning a Git repository and working locally (25 min)

1. Configure Git command line and editor if you haven’t done that already.
2. Decide which repository you want to clone: your fork or the original repository? Both

will work for this exercise. Then, clone the recipe book.
3. Create a new branch.
4. Make a commit on your new branch.
5. Switch back to the main branch and create one or two commits there.
6. Merge the new branch into main .
7. Compare the graph locally and on GitHub and observe that the changes only exist

locally on your computer.
8. Where are the remote branches? Practice how you can see all remote branches also

locally and how you can fetch them and make local changes to them.

The solution below goes over most of the answer and should be used as your guide (you can’t
figure it out just from the exercise instructions).

Solution and walk-through

(1) Configure Git command line and editor

We have an own section for this: Configuring Git command line and editor.

(2) Cloning a repository

Now you need to decide which repository you want to clone. All of these options will work
for this exercise since we don’t plan to push changes back (for step 8 it might be easier to use
the original repository):

Clone the recipe book from your fork.
Or clone the recipe book from the original repository: https://github.com/cr-workshop-
exercises/recipe-book

https://github.com/cr-workshop-exercises/recipe-book
https://github.com/cr-workshop-exercises/recipe-book

Or first fork the original repository and then clone your fork.

The examples below assume you are cloning the original repository. If you are cloning your
fork, you should replace cr-workshop-exercises with your GitHub username.

(3) Creating branches locally

Command line VS Code RStudio

If you are unsure whether you are using SSH or HTTPS, please read Authenticating to
GitHub: SSH or HTTPS or VS Code?.

This creates a directory called “recipe-book” unless it already exists. You can also specify
the target directory on your computer (in this case “my-recipe-book”):

SSH HTTPS

$ git clone git@github.com:cr-workshop-exercises/recipe-book.git

SSH HTTPS

$ git clone git@github.com:cr-workshop-exercises/recipe-book.git my-recipe-
book

Command line VS Code RStudio

Create a new branch called another-recipe from main and switch to it:

If you leave out the last argument, it will create a branch from the current branch:

$ git switch --create another-recipe main

(4) Creating commits locally

(5) Switching branches and creating commits

(6) Merging branches locally

$ git switch --create another-recipe

Command line VS Code RStudio

Create a new file. After we have created it, we can stage and commit the change:

Make sure to replace “new-file.md” with the actual name of the file you created and to
replace “Short summary of the change” with a meaningful commit message.

$ git add new-file.md
$ git commit -m "Short summary of the change"

Command line VS Code RStudio

First switch to the main branch:

Then modify a file. Finally git add and then commit the change:

$ git switch main

$ git commit -m "Short summary of the change"

Command line VS Code RStudio

On the command line, when we merge, we always modify our current branch.

(7) How to compare the graph locally and on GitHub

Compare this with the graph on GitHub: Insights tab → Network view (just like we have done
before). The result is that we should not be able to see the new branch and the new commits
on GitHub (since we haven’t pushed it to GitHub yet - it is only local work so far).

If you are not sure anymore what your current branch is, type:

Another way to find out where we are in Git:

In this case we merge the another-recipe branch into our current branch:

$ git branch

$ git status

$ git merge another-recipe

Command line VS Code RStudio

We recommend to define an alias in Git, to be able to nicely visualize branch structure in
the terminal without having to remember a long Git command:

Then you can just type git graph from there on. We have an own section about aliases:
Aliases and configuration.

Compare this with the graph on GitHub: Insights tab → Network view (just like we have
done before). The result is that we should not be able to see the new branch and the
new commits on GitHub (since we haven’t pushed it to GitHub yet - it is only local work
so far).

$ git log --graph --oneline --decorate --all

$ git config --global alias.graph "log --all --graph --decorate --oneline"

(8) Browsing remote branches and creating local branches from them

Command line VS Code RStudio

With git branch you can list all local branches:

But where are the remote branches? We expect to see a couple of them.

We can see them by asking for all branches (your output might vary depending on where
you cloned from):

You can create a local branch from a remote branch which will “track” the remote
branch. For instance, to create a local branch alex/fruit-salad from the remote branch
origin/alex/fruit-salad and switch to it, you can do:

This shortcut will do the same thing:

Or even shorter:

$ git branch

 another-recipe
* main

$ git branch --all

 another-recipe
* main
 remotes/origin/HEAD -> origin/main
 remotes/origin/alex/fruit-salad
 remotes/origin/main
 remotes/origin/radovan/lasagna
 remotes/origin/radovan/poke

$ git switch --create alex/fruit-salad origin/alex/fruit-salad

$ git switch --track origin/alex/fruit-salad

$ git switch alex/fruit-salad

https://github.com/cr-workshop-exercises/recipe-book/branches/all

Summary

When we clone a repository, we get a full backup of the repository, including all history:
all commits, branches, and tags.
Yesterday we learned about branches and commits, and now we created and used them
locally.
Creating local branches and commits does not automatically modify the remote
repository. To “push” our local changes to the remote repository, we have to actively
“push” them there. We will practice this in a later episode: How to turn your project to a
Git repo and share it
Remote branches and local branches are not the same thing. If we want to create local
commits, we always need to create a local branch first. But the local branch can “track”
the remote branch and we can push and pull changes to and from the remote branch.

Inspecting history

 Objectives

Be able find a line of code, find out why it was introduced and when.
Be able to quickly find the commit that changed a behavior.

Instructor note

30 min teaching/type-along
20 min exercise

Command line, GitHub, and VS Code

As usual, we offer ways to do this with the command line, VS Code, and GitHub.

Command line is most powerful and relatively easy with this. You may also use it along
with other things. If you haven’t tried it yet, we’d recommend you to give it a try.
The GitHub web interface allows many things to be done, but not everything.
VS Code allows some of these, but for some it’s easier to open the VS Code terminal and
run Git there.

If you want to create a branch and not switch to it, you can use git branch .

$ git branch alex/fruit-salad

Our toolbox for history inspection

Instructor note

First the instructor demonstrates few commands on a real life example repository
https://github.com/networkx/networkx (mentioned in the amazing site The Programming
Historian). Later we will practice these in an archaeology exercise (below).

Warm-up: “Git History” browser

As a warm-up we can try the “Git History” browser on the README.rst file of the networkx
repository:

Visit and browse
https://github.githistory.xyz/networkx/networkx/blob/main/README.rst (use left/right
keys).
You can try this on some of your GitHub repositories, too!

Searching text patterns in the repository

With git grep you can find all lines in a repository which contain some string or regular
expression. This is useful to find out where in the code some variable is used or some error
message printed.

Command line GitHub VS Code RStudio

The Git command is as described above:

In the networkx repository you can try:

$ git grep TEXT
$ git grep "some text with spaces"

$ git clone https://github.com/networkx/networkx
$ cd networkx
$ git grep -i fixme

https://github.com/networkx/networkx
https://programminghistorian.org/
https://programminghistorian.org/
https://githistory.xyz/
https://githistory.xyz/
https://github.com/networkx/networkx
https://github.githistory.xyz/networkx/networkx/blob/main/README.rst
https://github.com/networkx/networkx

Inspecting individual commits

Line-by-line code annotation with metadata

With git annotate you can see line by line who and when the line was modified last. It also
prints the precise hash of the last change which modified each line. Incredibly useful for
reproducibility.

While git grep searches the current state of the repository, it is also possible to search
through all changes with git log -S sometext which can be useful to find where
something got removed.

Command line GitHub VS Code RStudio

We have seen this one before already. Using git show we can inspect an individual
commit if we know its hash:

For instance:

$ git show HASH

$ git show 759d589bdfa61aff99e0535938f14f67b01c83f7

Command line GitHub VS Code RStudio

Example:

If you annotate in a terminal and the file is longer than the screen, Git by default uses
the program less to scroll the output. Use /sometext <ENTER> to find “sometext” and
you can cycle through the results with n (next) and N (last). You can also use page

$ git annotate FILE

$ git annotate networkx/convert_matrix.py

💬 Discuss how these relatively trivial changes affect the annotation

Wrapping long lines of text/code into shorter lines
Auto-formatting tools such as black
Editors that automatically remove trailing whitespace

Inspecting code in the past

Exercise

✍️ Exercise: Explore basic archaeology commands (20 min)

up/down to scroll. You can quit with q .

Command line GitHub VS Code RStudio

We can create branches pointing to a commit in the past. This is the recommended
mechanism to inspect old code:

Example (lines starting with “#” are only comments):

On old Git versions which do not know the switch command (before 2.23), you need to
use this instead:

$ git switch --create BRANCHNAME HASH

create branch called "older-code" from hash 347e6292419b
$ git switch --create older-code 347e6292419bd0e4bff077fe971f983932d7a0e9

now you can navigate and inspect the code as it was back then
...

after we are done we can switch back to "main"
$ git switch main

if we like we can delete the "older-code" branch
$ git branch -d older-code

$ git checkout -b BRANCHNAME SOMEHASH

Let us explore the value of these commands in an exercise. Future exercises do not
depend on this, so it is OK if you do not complete it fully.

Exercise steps:

Make sure you are not inside another Git repository when running this exercise. If
you are, first step “outside” of it. We want to avoid creating a Git repository inside
another Git repository.

Clone this repository: https://github.com/networkx/networkx.git.

Then let us all make sure we are working on a well-defined version of the repository.

Command line GitHub VS Code RStudio

You can check if you are inside a Git repository with:

You want to see the above message which tells us that this is not a Git repository.

$ git status

fatal: not a git repository (or any of the parent directories): .git

Command line GitHub VS Code RStudio

$ git clone https://github.com/networkx/networkx.git

Command line GitHub VS Code RStudio

Step into the new directory and create an exercise branch from the networkx-
2.6.3 tag/release:

On old Git versions which do not know the switch command (before 2.23), you
need to use this instead:

$ cd networkx
$ git switch --create exercise networkx-2.6.3

https://github.com/networkx/networkx.git

Then using the above toolbox try to:

1. Find the code line which contains "Logic error in degree_correlation" .
2. Find out when this line was last modified or added. Find the actual commit which

modified that line.
3. Inspect the commit. What is the commit change? What is the commit metadata?
4. Create a branch pointing to the past when that commit was created to be able to

browse and use the code as it was back then.
5. How would you bring the code to the version of the code right before that line was

last modified?

✔︎Solution

$ git checkout -b exercise networkx-2.6.3

Command line GitHub

1. We use git grep :

This gives the output:

Maybe you also want to know the line number:

2. We use git annotate :

Then search for “Logic error” by typing “/Logic error” followed by Enter. The
last commit that modified it was 90544b4fa (unless that line changed since).

3. We use git show :

$ git grep "Logic error in degree_correlation"

networkx/algorithms/threshold.py: print("Logic error in
degree_correlation", i, rdi)

$ git grep -n "Logic error in degree_correlation"

$ git annotate networkx/algorithms/threshold.py

Finding out when something broke/changed with git bisect

This section only works with the command line.

“But I am sure it used to work! Strange.” - Sometimes you realize that something broke. You
know that it used to work. You do not know when precisely it broke.

💬 How would you solve this?

Before we go on first discuss how you would solve this problem: You know that it worked
500 commits ago but it does not work now.

How would you find the commit which changed it?
Why could it be useful to know the commit that changed it?

We will probably arrive at a solution which is similar to git bisect :

First find out a commit in past when it worked.

Now compile and/or run and/or test and decide whether “good” or “bad”.
This is how you can tell Git that this was a working commit:

4. Create a branch pointing to that commit (here we called the branch “past-
code”):

5. This is a compact way to access the first parent of 90544b4fa (here we called
the branch “just-before”):

$ git show 90544b4fa

$ git branch past-code 90544b4fa

$ git switch --create just-before 90544b4fa~1

$ git bisect start
$ git bisect good f0ea950 # this is a commit that worked
$ git bisect bad main # last commit is broken

And this is how you can tell Git that this was not a working commit:

Then bisect/iterate your way until you find the commit that broke it.
If you want to go back to start, type git bisect reset .
This can even be automatized with git bisect run SCRIPT . For this you write a script
that returns zero/non-zero (success/failure).

Optional exercise: Git bisect

This only works with the command line.

✍️ (optional) Use git bisect to find the bad commit

In this exercise, we use git bisect on an example repository. It is OK if you do not
complete this exercise fully.

Begin by cloning https://github.com/coderefinery/git-bisect-exercise.

Motivation

The motivation for this exercise is to be able to do archaeology with Git on a source code
where the bug is difficult to see visually. Finding the offending commit is often more than
half the debugging.

Background

The script get_pi.py approximates pi using terms of the Nilakantha series. It should
produce 3.14 but it does not. The script broke at some point and produces 3.57 using the
last commit:

At some point within the 500 first commits, an error was introduced. The only thing we
know is that the first commit worked correctly.

Your task

$ git bisect good

$ git bisect bad

$ python get_pi.py

3.57

https://github.com/coderefinery/git-bisect-exercise

Clone this repository and use git bisect to find the commit which broke the
computation (solution - spoiler alert!).
Once you have found the offending commit, also practice navigating to the last good
commit.
Bonus exercise: Write a script that checks for a correct result and use git bisect run
to find the offending commit automatically (solution - spoiler alert!).

Hints

Finding the first commit:

How to navigate to the parent of a commit with hash SOMEHASH:

Instead of a tilde you can also use this:

Summary

git log/grep/annotate/show/bisect is a powerful combination when doing archaeology in
a project on the command line.
git switch --create NAME HASH is the recommended mechanism to inspect old code on

the command line.
Most of these commands can be used in the GitHub web interface (except git bisect).

How to turn your project to a Git repo and share it

 Objectives

Turn our own coding project (small or large, finished or unfinished) into a Git
repository.
Be able to share a repository on the web to have a backup or so that others can reuse
and collaborate or even just find it.

Instructor note

$ git log --oneline | tail -n 1

$ git switch --create BRANCHNAME SOMEHASH~1

$ git switch --create BRANCHNAME SOMEHASH^

https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert
https://github.com/coderefinery/git-bisect-exercise#solutions-spoiler-alert

10 min introduction and setup
25 min exercise
15 min discussion

Exercise

From a bunch of files to a local repository which we then share on GitHub.

✍️ Exercise: Turn your project to a Git repo and share it (25 min)

1. Create a new directory called myproject with one or few files in it. This represents our
own project. It is not yet a Git repository. You can try that with your own project or
use a simple placeholder example.

2. Turn this new directory into a Git repository.
3. Share this repository on GitHub (or GitLab, since it really works the same).

We offer three different paths of how to do this exercise.

Via GitHub web interface: easy and can be a good starting point if you are completely
new to Git.
VS Code is quite easy, since VS Code can offer to create the GitHub repositories for
you.
Command line: you need to create the repository on GitHub and link it yourself.

Only using GitHub VS Code Command line RStudio

Create an repository on GitHub

First log into GitHub, then follow the screenshots and descriptions below.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/sharing.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/sharing.png

Click on the “plus” symbol on top right, then on “New repository”.

Then:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/new-repository.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/new-repository.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/create-repository-with-readme.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/create-repository-with-readme.png

Remote repositories

In this exercise we have pushed our local repository to a remote repository. You can learn
how to work with remote repositories in detail in the collaborative distributed version
control lesson.

To store your Git data on another server, you use remotes. A remote is a repository on its
own, with its own branches. We can push changes to the remote and pull from the remote.

You might use remotes to:

Back up your own work or make your work findable.
To collaborate with other people.

There are services that can be a remote:

If you have a server you can SSH to, you can use that as a remote.
GitHub is a popular, closed-source commercial site.
GitLab is a popular, open-core commercial site. Many universities have their own private
GitLab servers set up.
Bitbucket is yet another popular commercial site.
Another option is NotABug.
There are more …

Choose a repository name, add a short description, and in this case make sure to check
“Add a README file”. Finally “Create repository”.

Upload your files

Now that the repository is created, you can upload your files:

Click on the “+” symbol and then on “Upload files”.

https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/git-collaborative/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://notabug.org/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/upload-files.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/upload-files.png

Is putting software on GitHub/GitLab/… publishing?

It is a good first step but to make your code truly findable and accessible, consider making
your code citable and persistent: Get a persistent identifier (PID) such as DOI in addition to
sharing the code publicly, by using services like Zenodo or similar services.

Practical advice: How much Git is necessary?

Instructor note

20 min teaching/discussion

Working on the command line? Use “git status” all the time

Unsure on which branch you are or what state the repository is in? On the command line,
use git status frequently to get a quick overview. The git status command is one of the
most useful commands in Git to inform about which branch we are on, what we are about to
commit, which files might not be tracked, etc.

Writing useful commit messages

Useful commit messages summarize the change and provide context.

If you need a commit message that is longer than one line, then the convention is: one line
summarizing the commit, then one empty line, then paragraph(s) with more details in free
form, if necessary.

Good example:

Why something was changed is more important than what has changed.
Cross-reference to issues and discussions if possible/relevant.
Bad commit messages: “fix”, “oops”, “save work”
Bad examples: http://whatthecommit.com
Write commit messages in English that will be understood 15 years from now by someone
else than you. Or by your future you.
Many projects start out as projects “just for me” and end up to be successful projects
that are developed by 50 people over decades.

increase alpha to 2.0 for faster convergence

the motivation for this change is
to enable ...
...
(more context)
...
this is based on a discussion in #123

https://zenodo.org/
http://whatthecommit.com/

Commits with multiple authors are possible.

Good references:

“My favourite Git commit”
“On commit messages”
“How to Write a Git Commit Message”

 Note

A great way to learn how to write commit messages and to get inspired by their style
choices: browse repositories of codes that you use/like:

Some examples (but there are so many good examples):

SciPy
NumPy
Pandas
Julia
ggplot2, compare with their release notes
Flask, compare with their release notes

When designing commit message styles consider also these:

How will you easily generate a changelog or release notes?
During code review, you can help each other improving commit messages.

But remember: it is better to make any commit, than no commit. Especially in small projects.
Let not the perfect be the enemy of the good enough.

What level of branching complexity is necessary for each project?

Simple personal projects:

Typically start with just the main branch.
Use branches for unfinished/untested ideas.
Use branches when you are not sure about a change.
Use tags to mark important milestones.
If you are unsure what to do with unfinished and not working code, commit it to a
branch.

Projects with few persons: you accept things breaking sometimes

It might be reasonable to commit to the main branch and feature branches.

https://help.github.com/articles/creating-a-commit-with-multiple-authors/
https://fatbusinessman.com/2019/my-favourite-git-commit
https://who-t.blogspot.com/2009/12/on-commit-messages.html
https://chris.beams.io/posts/git-commit/
https://github.com/scipy/scipy/commits/main
https://github.com/numpy/numpy/commits/main
https://github.com/pandas-dev/pandas/commits/main
https://github.com/JuliaLang/julia/commits/master
https://github.com/tidyverse/ggplot2/commits/main
https://github.com/tidyverse/ggplot2/releases
https://github.com/pallets/flask/commits/main
https://github.com/pallets/flask/blob/main/CHANGES.rst

Projects with few persons: changes are reviewed by others

You create new feature branches for changes.
Changes are reviewed before they are merged to the main branch (more about that in
the collaborative Git lesson).
Consider to write-protect the main branch so that it can only be changed with pull
requests or merge requests.

How about staging and committing?

Commit early and often: rather create too many commits than too few. You can always
combine commits later.
Once you commit, it is very, very hard to really lose your code.
Always fully commit (or stash) before you do dangerous things, so that you know you are
safe. Otherwise it can be hard to recover.
Later you can start using the staging area (where you first stage and then commit in a
second step).
Later start using git add -p and/or git commit -p .

How large should a commit be?

Better too small than too large (easier to combine than to split).
Often I make a commit at the end of the day (this is a unit I would not like to lose).
Smaller sized commits may be easier to review for others than huge commits.
Imperfect commits are better than no commits.
A commit should not contain unrelated changes to simplify review and possible
repair/adjustments/undo later (but again: imperfect commits are better than no commits).

 Keypoints

There is no one size fits all - start simple and grow your project.

💬 Discussion

How do you [plan to] use Git?

Advanced users or beginners, please provide your input in the online collaborative
document.

https://coderefinery.github.io/git-collaborative/

What to avoid

When committing

Commit messages that explain what has been changed but do not explain why it has been
changed: This is as useful as code comments which describe the “obvious” such as “this is a
loop” instead of explaining why something is done this way. But don’t let perfect commit
messages stop you from the most important point, committing often.

Committing generated files: Compiled and generated files are not committed to version
control. There are many reasons for this:

These files can make it more difficult to run on different platforms.
These files are automatically generated and thus do not contribute in any meaningful way.
When tracking generated files you could see differences in the code although you haven’t
touched the code.

For this we use .gitignore files where you can list which files and paths should be ignored by
Git. You can also use wild-cards to ignore files with a certain extension or files in a certain
directory (collection of .gitignore templates).

Commit huge files: Huge files get sometimes accidentally added and committed which can
significantly increase the repository size. Note that a subsequent git rm does not remove
the addition from the repository history. Code review can help detecting accidental large file
additions. You can also add an automated test which checks for file sizes during a pull
request or merge request.

Postponing commits because the changes are “unfinished”/”ugly”: It is better to have many
OK-ish commits than too few perfect commits. Too few perfect commits are probably too
large and make undoing more difficult. It is also easier to combine too small commits than it is
to split too large commits. The longer you wait because of this, the harder it will be to
commit it at all.

Commit unrelated changes together: Makes it difficult to undo changes since it can undo
also the unrelated change. But, in the end, it is probably better to make big ugly commits than
to never commit. This is especially true in in the chaotic early phases of small projects.

When working with branches

Not updating your branch before starting new work: Few things are worse than doing work
and then noticing a lot of conflicts because unrelated but conflicting work was done in the
meantime or even before you started. Or noticing that someone else has already done it. This
problem is largest when you come back to an active project weeks or months later. So update
your branch before adding new commits.

https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://github.com/github/gitignore

Too ambitious branch which risks to never get completed: The branch will never merge back
and be so big and so ambitious with too many/big features that the risk is high that once it is
really ready, there are conflicts everywhere.

Over-engineering the branch layout and safeguards in small projects: This may prevent
people from contributing (maybe even including yourself?). Add more restrictions and
safeguards only as the project and the group of collaborators grows.

💬 Discussion

Question to all seasoned Git users: What are we missing on this page? Please contribute
improvements.

Basics

 Objectives

Learn to create Git repositories and make commits.
Get a grasp of the structure of a repository.
Learn how to inspect the project history.
Learn how to write useful commit log messages.

Instructor note

35 min teaching/type-along
40 min exercise

What is Git, and what is a Git repository?

Git is a version control system: can record/save snapshots and track the content of a
folder as it changes over time.
Every time we commit a snapshot, Git records a snapshot of the entire project, saves it,
and assigns it a version.
These snapshots are kept inside a sub-folder called .git .
If we remove .git , we remove the repository and history (but keep the working
directory!).
The directory .git uses relative paths - you can move the whole repository somewhere
else and it will still work.
Git doesn’t do anything unless you ask it to (it does not record anything automatically).
Multiple interfaces to Git exist (command line, graphical interfaces, web interfaces).

Recording a snapshot with Git

Git takes snapshots only if we request it.
We will record changes in two steps (we will later explain why this is a recommended
practice).
Example (we don’t need to type yet):

We first focus (git add , we “stage” the change), then record (git commit):

Git staging and committing.

💬 Question for the more advanced participants

What do you think will be the outcome if you stage a file and then edit it and stage it
again, do this several times and at the end perform a commit? Think of focusing several
scenes and pressing the shutter at the end.

Configuring Git command line

Before we start using Git on the command line, we need to configure Git. This is also part of
the installation instructions but we need to make sure we all have set name, email address,
editor, and default branch:

$ git add FILE.txt
$ git commit

$ git add FILE.txt ANOTHERFILE.txt
$ git commit

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git_stage_commit.svg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git_stage_commit.svg
https://coderefinery.github.io/installation/shell-and-git/#configuration

Verify with:

Instructor note

Instructors, give learners enough time to do the above configuration steps.

Type-along: Tracking a guacamole recipe with Git

We will learn how to initialize a Git repository, how to track changes, and how to make
delicious guacamole! (Inspiration for this example based on a suggestion by B. Smith in a
discussion in the Carpentries mailing list)

The motivation for taking a cooking recipe instead of a program is that everybody can relate
to cooking but not everybody may be able to relate to a program written in e.g. Python or
another specific language.

Instructor note

Instructors, please encourage now that participants type along.

 Note

It is possible to go through this lesson in the command line or in the browser (on GitHub).

We recommend to start with the command line but later to also try in the browser.
If you get really stuck in the command line, try following in the browser and later you
can try to return to the command line.

Creating a repository

One of the basic principles of Git is that it is easy to create repositories:

$ git config --global user.name "Your Name"
$ git config --global user.email yourname@example.com
$ git config --global core.editor nano
$ git config --global init.defaultBranch main

$ git config --list

Command line Browser (GitHub)

Adding files and committing changes

Let us now create two files.

One file is called ingredients.txt and contains:

The second file is called instructions.txt and contains:

That’s it! With git init -b main have now created an empty Git repository where
main is the default branch (more about branches later).

We will use git status a lot to check out what is going on:

We will make sense of this information during this workshop.

$ mkdir recipe
$ cd recipe
$ git init -b main

$ git status

On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

* 2 avocados
* 1 chili
* 1 lime
* 2 tsp salt

* chop avocados
* chop onion
* chop chili
* squeeze lime
* add salt
* and mix well

Command line Browser (GitHub)

As mentioned above, in Git you can always check the status of files in your repository
using git status . It is always a safe command to run and in general a good idea to do
when you are trying to figure out what to do next:

The two files are untracked in the repository (directory). You want to add the files (focus
the camera) to the list of files tracked by Git. Git does not track any files automatically
and you need make a conscious decision to add a file. Let’s do what Git hints at, and add
the files, one by one:

Now this change is staged and ready to be committed. Let us now commit the change to
the repository:

Right after we query the status to get this useful command into our muscle memory:

$ git status

On branch main

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 ingredients.txt
 instructions.txt

nothing added to commit but untracked files present (use "git add" to track)

$ git add ingredients.txt
$ git status

On branch main

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: ingredients.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 instructions.txt

$ git commit -m "adding ingredients"

[main (root-commit) f146d25] adding ingredients
 1 file changed, 4 insertions(+)
 create mode 100644 ingredients.txt

Exercise: Record changes

✍️ Basic-1: Record changes

Add 1/2 onion to ingredients.txt and also the instruction to “enjoy!” to
instructions.txt .

Now stage and commit also the other file:

We will add a third file to the repository, README.md , containing:

Now stage and commit also the README.md file:

What does the -m flag mean? Let us check the help page for that command:

You should see a very long help page as the tool is very versatile (press q to quit). Do not
worry about this now but keep in mind that you can always read the help files when in
doubt. Searching online can also be useful, but choosing search terms to find relevant
information takes some practice and discussions in some online threads may be
confusing. Note that help pages also work when you don’t have a network connection!

$ git status

$ git add instructions.txt
$ git commit -m "adding instructions"

recipe

This is an exercise repository.

$ git add README.md
$ git commit -m "adding README"

$ git help commit

Command line Browser (GitHub)

After modifying the files, do not stage the changes yet (do not git add yet).

When you are done editing the files, try git diff :

You will see (can you identify in there the two added lines?):

Now first stage and commit each change separately (what happens when we leave
out the -m flag?):

When you leave out the -m flag, Git should open an editor where you can edit your
commit message. This message will be associated and stored with the changes you
made. This message is your chance to explain what you’ve done and convince others
(and your future self) that the changes you made were justified. Write a message and
save and close the file.

When you are done committing the changes, experiment with these commands:

$ git diff

diff --git a/ingredients.txt b/ingredients.txt
index 4422a31..ba8854f 100644
--- a/ingredients.txt
+++ b/ingredients.txt
@@ -2,3 +2,4 @@
 * 1 chili
 * 1 lime
 * 2 tsp salt
+* 1/2 onion
diff --git a/instructions.txt b/instructions.txt
index 7811273..2b11074 100644
--- a/instructions.txt
+++ b/instructions.txt
@@ -4,3 +4,4 @@
 * squeeze lime
 * add salt
 * and mix well
+* enjoy!

$ git add ingredients.txt
$ git commit -m "add half an onion"
$ git add instructions.txt
$ git commit # <-- we have left out -m "..."

Git history and log

We can browse the development and access each state that we have committed.
The long hashes uniquely label a state of the code.
They are not just integers counting 1, 2, 3, 4, … (why?).
Output is in reverse chronological order, i.e. newest commits on top.
We will use them when comparing versions and when going back in time.

$ git log
$ git log --stat
$ git log --oneline

Command line Browser (GitHub)

If you haven’t yet, please try now git log :

$ git log

commit e7cf023efe382340e5284c278c6ae2c087dd3ff7 (HEAD -> main)
Author: Radovan Bast <bast@users.noreply.github.com>
Date: Sun Sep 17 19:12:47 2023 +0200

 don't forget to enjoy

commit 79161b6e67c62ad4688a58c1e54183334611a390
Author: Radovan Bast <bast@users.noreply.github.com>
Date: Sun Sep 17 19:12:32 2023 +0200

 add half an onion

commit a3394e39535343c4dae3bb4f703741a31aa8b78a
Author: Radovan Bast <bast@users.noreply.github.com>
Date: Sun Sep 17 18:47:14 2023 +0200

 adding README

commit 369624674e63de48055a65bf63055bd59c985d22
Author: Radovan Bast <bast@users.noreply.github.com>
Date: Sun Sep 17 18:46:58 2023 +0200

 adding instructions

commit f146d25b94569a15e94d7f0da6f15d7554f76c49
Author: Radovan Bast <bast@users.noreply.github.com>
Date: Sun Sep 17 18:35:52 2023 +0200

 adding ingredients

git log --oneline only shows the first 7 characters of the commit hash and is good to
get an overview.
If the first characters of the hash are unique it is not necessary to type the entire hash.
git log --stat is nice to show which files have been modified.

Optional exercises: Comparing changes

✍️ (optional) Basic-2: Comparing and showing commits

✍️ (optional) Basic-3: Visual diff tools

This exercise is only relevant for the command line. In the browser, the preview is already
side-by-side and “visual”.

Make further modifications and experiment with git difftool (requires installing one
of the visual diff tools):

On Windows or Linux:

On macOS:

Git difftool using meld.

Command line Browser (GitHub)

1. Have a look at specific commits with git show HASH .
2. Inspect differences between commit hashes with git diff HASH1 HASH2 .

$ git difftool --tool=meld HASH

$ git difftool --tool=opendiff HASH

https://coderefinery.github.io/installation/difftools/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/meld.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/meld.png

You probably want to use the same visual diff tool every time and you can configure Git
for that:

✍️ (optional) Basic-4: Browser and command line

You have noticed that it is possible to work either in the command line or in the browser.
It could help to deepen the understanding trying to do the above steps in both.

If you have managed to do the above in the command line, try now in the browser.
If you got stuck in the command line and move to the browser, try now to trouble-
shoot the command line Git.

Writing useful commit messages

Using git log --oneline or browsing a repository on the web, we better understand that
the first line of the commit message is very important.

Good example:

Convention: one line summarizing the commit, then one empty line, then paragraph(s) with
more details in free form, if necessary.

Why something was changed is more important than what has changed.
Cross-reference to issues and discussions if possible/relevant.
Bad commit messages: “fix”, “oops”, “save work”
Bad examples: http://whatthecommit.com
Write commit messages in English that will be understood 15 years from now by someone
else than you. Or by your future you.
Many projects start out as projects “just for me” and end up to be successful projects
that are developed by 50 people over decades.
Commits with multiple authors are possible.

Good references:

$ git config --global diff.tool meld

increase threshold alpha to 2.0

the motivation for this change is
to enable ...
...
this is based on a discussion in #123

http://whatthecommit.com/
https://help.github.com/articles/creating-a-commit-with-multiple-authors/

“My favourite Git commit”
“On commit messages”
“How to Write a Git Commit Message”

 Note

A great way to learn how to write commit messages and to get inspired by their style
choices: browse repositories of codes that you use/like:

Some examples (but there are so many good examples):

SciPy
NumPy
Pandas
Julia
ggplot2, compare with their release notes
Flask, compare with their release notes

When designing commit message styles consider also these:

How will you easily generate a changelog or release notes?
During code review, you can help each other improving commit messages.

But remember: it is better to make any commit, than no commit. Especially in small projects.
Let not the perfect be the enemy of the good enough.

Ignoring files and paths with .gitignore

💬 Discussion

Should we add and track all files in a project?
How about generated files?
Why is it considered a bad idea to commit compiled binaries to version control?
What types of generated files do you know?

Compiled and generated files are not committed to version control. There are many reasons
for this:

These files can make it more difficult to run on different platforms.
These files are automatically generated and thus do not contribute in any meaningful way.
When tracking generated files you could see differences in the code although you haven’t
touched the code.

For this we use .gitignore files. Example:

https://fatbusinessman.com/2019/my-favourite-git-commit
https://who-t.blogspot.com/2009/12/on-commit-messages.html
https://chris.beams.io/posts/git-commit/
https://github.com/scipy/scipy/commits/main
https://github.com/numpy/numpy/commits/main
https://github.com/pandas-dev/pandas/commits/main
https://github.com/JuliaLang/julia/commits/master
https://github.com/tidyverse/ggplot2/commits/main
https://github.com/tidyverse/ggplot2/releases
https://github.com/pallets/flask/commits/main
https://github.com/pallets/flask/blob/main/CHANGES.rst

An example taken from the official Git documentation:

.gitignore should be part of the repository because we want to make sure that all
developers see the same behavior.
All files should be either tracked or ignored.
.gitignore uses something called a shell glob syntax for determining file patterns to

ignore. You can read more about the syntax in the documentation.
You can have .gitignore files in lower level directories and they affect the paths below.

Graphical user interfaces

We have seen how to make commits in the command line and via the GitHub website. But it
is also possible to work from within a Git graphical user interface (GUI):

GitHub Desktop
SourceTree
List of third-party GUIs

Summary

Now we know how to save snapshots:

And this is what we do as we program.

Every state is then saved and later we will learn how to go back to these “checkpoints” and
how to undo things.

ignore compiled python 2 files
*.pyc
ignore compiled python 3 files
__pycache__

ignore objects and archives, anywhere in the tree.
*.[oa]
ignore generated html files,
*.html
except foo.html which is maintained by hand
!foo.html
ignore everything under build directory
build/

$ git add FILE(S)
$ git commit

https://git-scm.com/docs/gitignore
https://en.wikipedia.org/wiki/Glob_(programming)
https://git-scm.com/docs/gitignore
https://desktop.github.com/
https://www.sourcetreeapp.com/
https://git-scm.com/downloads/guis

Git is not ideal for large binary files (for this consider git-annex).

✍️ Basic-5: Test your understanding

Which command(s) below would save the changes of myfile.txt to an existing local Git
repository?

1.

2.

3.

4.

✔︎Solution

1. Would only create a commit if files have already been staged.
2. Would try to create a new repository in a folder “myfile.txt”.
3. Is correct: first add the file to the staging area, then commit.
4. Would try to commit a file “my recent changes” with the message myfile.txt.

 Keypoints

It takes only one command to initialize a Git repository: git init -b main .
Commits should be used to tell a story.
Git uses the .git folder to store the snapshots.

$ git init -b main # initialize new repository (main is default branch)
$ git add # add files or stage file(s)
$ git commit # commit staged file(s)
$ git status # see what is going on
$ git log # see history
$ git diff # show unstaged/uncommitted modifications
$ git show # show the change for a specific commit
$ git mv # move/rename tracked files
$ git rm # remove tracked files

$ git commit -m "my recent changes"

$ git init myfile.txt
$ git commit -m "my recent changes"

$ git add myfile.txt
$ git commit -m "my recent changes"

$ git commit -m myfile.txt "my recent changes"

http://git-annex.branchable.com/

Don’t be afraid to stage and commit often. Better too often than not often enough.

Branching and merging

 Objectives

Be able to create and merge branches.
Know the difference between a branch and a tag.

Instructor note

30 min teaching/type-along
20 min exercise

Motivation for branches

In the previous section we tracked a guacamole recipe with Git.

Up until now our repository had only one branch with one commit coming after the other:

m4 m5m2 m3m1

main

HEAD

Linear Git repository.

Commits are depicted here as little boxes with abbreviated hashes.
Here the branch main points to a commit.
“HEAD” is the current position (remember the recording head of tape recorders?). When
we say HEAD , we mean those literal letters - this isn’t a placeholder for something else.
When we talk about branches, we often mean all parent commits, not only the commit
pointed to.

Now we want to do this:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-branch-1.svg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-branch-1.svg

Image created using https://gopherize.me/ (inspiration).

Software development is often not linear:

We typically need at least one version of the code to “work” (to compile, to give expected
results, …).
At the same time we work on new features, often several features concurrently. Often
they are unfinished.
We need to be able to separate different lines of work really well.

The strength of version control is that it permits the researcher to isolate different tracks of
work, which can later be merged to create a composite version that contains all changes:

m4

x1

m1 m2

c2

m3

b1 b2

x3

b3

c1

x2

Isolated tracks of work.

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-collaborative.svg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/git-collaborative.svg

We see branching points and merging points.
Main line development is often called main or master .
Other than this convention there is nothing special about main or master , it is a branch
like any other.
Commits form a directed acyclic graph (we have left out the arrows to avoid confusion
about the time arrow).

A group of commits that create a single narrative are called a branch. There are different
branching strategies, but it is useful to think that a branch tells the story of a feature, e.g.
“fast sequence extraction” or “Python interface” or “fixing bug in matrix inversion algorithm”.

 An important alias

We will now define an alias in Git, to be able to nicely visualize branch structure in the
terminal without having to remember a long Git command (more details about aliases are
given in a later section). This is extensively used in the rest of this and other lessons:

Instructor note

Instructors, please demonstrate how to set this alias and ensure that all create it. This is
very important for this lesson and git-collaborative.

Let us inspect the project history using the git graph alias:

We have a couple commits and only one development line (branch) and this branch is
called main .
Commits are states characterized by a 40-character hash (checksum).
git graph print abbreviations of these checksums.

Branches are pointers that point to a commit.
Branch main points to a commit (in this example it is
e7cf023efe382340e5284c278c6ae2c087dd3ff7 but on your computer the hash will be

different).

$ git config --global alias.graph "log --all --graph --decorate --oneline"

$ git graph

* e7cf023 (HEAD -> main) don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

HEAD is another pointer, it points to where we are right now (currently main)

In the following we will learn how to create branches, how to switch between them, how to
merge branches, and how to remove them afterwards.

Creating and working with branches

Instructor note

We do the following part together. Encourage participants to type along.

 It is possible to create and merge branches directly on GitHub

However, we do not have screenshots for that in this episode
But if you prefer to work in the browser, please try it
Please contribute screenshots to this lesson

Let’s create a branch called experiment where we add cilantro to ingredients.txt (text after
“#” are comments and not part of the command).

 Note

In case git switch does not work, your Git version might be older than from 2019. On
older Git it is git checkout instead of git switch .

Verify that you are on the experiment branch (note that git graph also makes it clear
what branch you are on: HEAD -> branchname):

This command shows where we are, it does not create a branch.

Then add 2 tbsp cilantro on top of the ingredients.txt :

$ git branch experiment main # creates branch "experiment" from "main"
$ git switch experiment # switch to branch "experiment"
$ git branch # list all local branches and show on which branch we are

$ git branch

* experiment
 main

Stage this and commit it with the message “let us try with some cilantro”.
Then reduce the amount of cilantro to 1 tbsp, stage and commit again with “maybe little
bit less cilantro”.

We have created two new commits:

The branch experiment is two commits ahead of main .
We commit our changes to this branch.

Exercise: Create and commit to branches

✍️ Branch-1: Create and commit to branches

In this exercise, you will create another new branch and few more commits. We will use
this in the next section, to practice merging. The goal of the exercise is to end up with 3
branches.

Change to the branch main .
Create another branch called less-salt .

Note! makes sure you are on main branch when you create the less-salt branch.
A safer way would be to explicitly mention to create from the main branch as
shown below:

Switch to the less-salt branch.
On the less-salt branch reduce the amount of salt.
Commit your changes to the less-salt branch.

* 2 tbsp cilantro
* 2 avocados
* 1 chili
* 1 lime
* 2 tsp salt
* 1/2 onion

$ git graph

* bcb8b78 (HEAD -> experiment) maybe little bit less cilantro
* f6ec7b7 let us try with some cilantro
* e7cf023 (main) don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

$ git branch less-salt main

Use the same commands as we used above.

We now have three branches (in this case HEAD points to less-salt):

Here is a graphical representation of what we have created:

l1

e2e1m5m4m2 m3m1

less-salt

HEAD

experimentmain

Now switch to main .
In a new commit, improve the README.md file (we added the word “Guacamole”):

Now you should have this situation:

$ git branch

 experiment
* less-salt
 main

$ git graph

* bf28166 (HEAD -> less-salt) reduce amount of salt
| * bcb8b78 (experiment) maybe little bit less cilantro
| * f6ec7b7 let us try with some cilantro
|/
* e7cf023 (main) don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

Guacamole recipe

This is an exercise repository.

m1 m2 m5

m6

e1 e2m3

l1

m4

main

HEAD

less-salt

experiment

And for comparison this is how it looks on GitHub.

Exercise: Merging branches

It turned out that our experiment with cilantro was a good idea. Our goal now is to merge
experiment into main .

✍️ Branch-2: Merge branches

Merge experiment and less-salt back into main following the lesson below until the
point where we start deleting branches.

 If you got stuck in the above exercises or joined later

If you got stuck in the above exercises or joined later, you can apply the commands
below. But skip this box if you managed to create branches.

$ git graph

* b4af65b (HEAD -> main) improve the documentation
| * bf28166 (less-salt) reduce amount of salt
|/
| * bcb8b78 (experiment) maybe little bit less cilantro
| * f6ec7b7 let us try with some cilantro
|/
* e7cf023 don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

https://github.com/coderefinery/recipe-before-merge/network

Or call a helper to un-stuck it for you.

First we make sure we are on the branch we wish to merge into:

Then we merge experiment into main :

e2m1 m2 m5

m6

e1m3

l1

m7

m4

experiment

less-salt

main

HEAD

We can verify the result:

$ cd .. # step out of the current directory

$ git clone https://github.com/coderefinery/recipe-before-merge.git
$ cd recipe-before-merge

$ git switch experiment
$ git switch less-salt
$ git switch main

$ git remote remove origin

$ git graph

$ git branch

 experiment
 less-salt
* main

$ git merge experiment

What happens internally when you merge two branches is that Git creates a new commit,
attempts to incorporate changes from both branches and records the state of all files in the
new commit. While a regular commit has one parent, a merge commit has two (or more)
parents.

To view the branches that are merged into the current branch we can use the command:

We are also happy with the work on the less-salt branch. Let us merge that one, too, into
main :

e2

m7

m8

m6

m1 m2 e1m3

l1

m5m4

experiment

main

HEAD

less-salt

$ git graph

* 81fcc0c (HEAD -> main) Merge branch 'experiment'
|\
| * bcb8b78 (experiment) maybe little bit less cilantro
| * f6ec7b7 let us try with some cilantro
* | b4af65b improve the documentation
|/
| * bf28166 (less-salt) reduce amount of salt
|/
* e7cf023 don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

$ git branch --merged

 experiment
* main

$ git branch # make sure you are on main
$ git merge less-salt

Commit graph after merge.

We can verify the result in the terminal:

Observe how Git nicely merged the changed amount of salt and the new ingredient in the
same file without us merging it manually:

If the same file is changed in both branches, Git attempts to incorporate both changes into
the merged file. If the changes overlap then the user has to manually settle merge conflicts (we
will do that later).

Deleting branches safely

Both feature branches are merged:

This means we can delete the branches:

$ git graph

* 4e03d4b (HEAD -> main) Merge branch 'less-salt'
|\
| * bf28166 (less-salt) reduce amount of salt
* | 81fcc0c Merge branch 'experiment'
|\ \
| * | bcb8b78 (experiment) maybe little bit less cilantro
| * | f6ec7b7 let us try with some cilantro
| |/
* / b4af65b improve the documentation
|/
* e7cf023 don't forget to enjoy
* 79161b6 add half an onion
* a3394e3 adding README
* 3696246 adding instructions
* f146d25 adding ingredients

$ cat ingredients.txt

* 1 tbsp cilantro
* 2 avocados
* 1 chili
* 1 lime
* 1 tsp salt
* 1/2 onion

$ git branch --merged

 experiment
 less-salt
* main

This is the result:

e2

m7

m8

m6

m1 m2 e1m3 m5

l1

m4

main

HEAD

Commit graph after merged branches were deleted.

We observe that when deleting branches, only the pointers (“sticky notes”) disappeared, not
the commits.

Git will not let you delete a branch which has not been reintegrated unless you insist using
git branch -D . Even then your commits will not be lost but you may have a hard time

finding them as there is no branch pointing to them.

Optional exercises with branches

The following exercises are more advanced, absolutely no problem to postpone them to a
few months later. If you give them a go, keep in mind that you might run into conflicts, which
we will learn to resolve in the next section.

✍️ (optional) Branch-3: Perform a fast-forward merge

1. Create a new branch from main and switch to it.
2. Create a couple of commits on the new branch (for instance edit README.md):

e1 e2

m7

m8 n3n1

m5

l1

m6

m4

n2

m2 m3m1
update-readme

HEAD

main

$ git branch -d experiment
$ git branch -d less-salt

3. Now switch to main .
4. Merge the new branch to main .
5. Examine the result with git graph .
6. Have you expected the result? Discuss what you see.

✔︎Solution

You will see that in this case no merge commit was created and Git merged the two
branches by moving (fast-forwarding) the “main” branch (label) three commits
forward.

This was possible since one branch is the ancestor of the other and their
developments did not diverge.

A merge that does not require any merge commit is a fast-forward merge.

✍️ (optional) Branch-4: Rebase a branch (instead of merge)

As an alternative to merging branches, one can also rebase branches. Rebasing means that
the new commits are replayed on top of another branch (instead of creating an explicit
merge commit). Note that rebasing changes history and should not be done on public
commits!

1. Create a new branch, and make a couple of commits on it.
2. Switch back to main , and make a couple of commits on it.
3. Inspect the situation with git graph .
4. Now rebase the new branch on top of main by first switching to the new branch, and

then git rebase main .
5. Inspect again the situation with git graph . Notice that the commit hashes have

changed - think about why!

✔︎Solution

You will notice two things:

History is now linear and does not contain merge commits.
All the commit hashes that were on the branch that got rebased, have changed.
This also demonstrates that git rebase is a command that alters history. The
commit history looks as if the rebased commits were all done after the main
commits.

Tags

A tag is a pointer to a commit but in contrast to a branch it does not ever move when
creating new commits later.
It can be useful to think of branches as sticky notes and of tags as commemorative
plaques.
We use tags to record particular states or milestones of a project at a given point in time,
like for instance versions (have a look at semantic versioning, v1.0.3 is easier to
understand and remember than 64441c1934def7d91ff0b66af0795749d5f1954a).
There are two basic types of tags: annotated and lightweight.
Use annotated tags since they contain the author and can be cryptographically signed
using GPG, timestamped, and a message attached.

Let’s add an annotated tag to our current state of the guacamole recipe:

As you may have found out already, git show is a very versatile command. Try this:

For more information about tags see for example the Pro Git book chapter on the subject.

Summary

Let us pause for a moment and recapitulate what we have just learned:

Since the following command combo is so frequent:

$ git tag -a nobel-2023 -m "recipe I made for the 2023 Nobel banquet"

$ git show nobel-2023

$ git branch # see where we are
$ git branch NAME # create branch NAME
$ git switch NAME # switch to branch NAME
$ git merge NAME # merge branch NAME (to current branch)
$ git branch -d NAME # delete branch NAME
$ git branch -D NAME # delete unmerged branch NAME

$ git branch NAME # create branch NAME
$ git switch NAME # switch to branch NAME

https://en.wikipedia.org/wiki/Commemorative_plaque
https://en.wikipedia.org/wiki/Commemorative_plaque
http://semver.org/
https://git-scm.com/book/en/v2/Git-Basics-Tagging

There is a shortcut for it:

Typical workflows

With this there are two typical workflows:

Sometimes you have a wild idea which does not work. Or you want some throw-away
branch for debugging:

✍️ Branch-5: Test your understanding

Which of the following combos (one or more) creates a new branch and makes a commit
to it?

1.

2.

3.

$ git switch --create NAME # create branch NAME and switch to it

$ git switch --create new-feature # create branch, switch to it
$ git commit # work, work, work, ..., and test
$ git switch main # once feature is ready, switch to main
$ git merge new-feature # merge work to main
$ git branch -d new-feature # remove branch

$ git switch --create wild-idea # create branch, switch to it, work, work, work ...
$ git switch main # realize it was a bad idea, back to main
$ git branch -D wild-idea # it is gone, off to a new idea

$ git branch new-branch
$ git add file.txt
$ git commit

$ git add file.txt
$ git branch new-branch
$ git switch new-branch
$ git commit

$ git switch --create new-branch
$ git add file.txt
$ git commit

4.

✔︎Solution

Both 2 and 3 would do the job. Note that in 2 we first stage the file, and then create
the branch and commit to it. In 1 we create the branch but do not switch to it, while
in 4 we don’t give the --create flag to git switch to create the new branch.

 Keypoints

A branch is a division unit of work, to be merged with other units of work.
A tag is a pointer to a moment in the history of a project.

Conflict resolution

 Objectives

Understand merge conflicts sufficiently well to be able to fix them.

Instructor note

20 min teaching/type-along
20 min exercise

Conflicts in Git and why they are good

Imagine we start with the following text file:

On branch A somebody modifies:

$ git switch new-branch
$ git add file.txt
$ git commit

1 tbsp cilantro
2 avocados
1 chili
1 lime
1 tsp salt
1/2 onion

On branch B somebody else modifies:

When we try to merge Git will figure out that we 2 limes and an entire onion but does not
know whether to reduce or increase the amount of cilantro:

Git is very good at resolving modifications when merging branches and in most cases a git
merge runs smooth and automatic. Then a merge commit appears (unless fast-forward; see
Optional exercises with branches) without you even noticing.

But sometimes the same portion of the code/text is modified on two branches in two
different ways and Git issues a conflict. Then you need to tell Git which version to keep
(resolve it).

There are several ways to do that as we will see.

Please remember:

It is good that Git conflicts exist: Git will not silently overwrite one of two differing
modifications.
Conflicts may look scary, but are not that bad after a little bit of practice. Also they are
luckily rare.
Don’t be afraid of Git because of conflicts. You may not meet some conflicts using other
systems because you simply can’t do the kinds of things you do in Git.

2 tbsp cilantro
2 avocados
1 chili
2 lime
1 tsp salt
1/2 onion

1/2 tbsp cilantro
2 avocados
1 chili
1 lime
1 tsp salt
1 onion

?????????????????
2 avocados
1 chili
2 lime
1 tsp salt
1 onion

You can take human measures to reduce them.

💬 The human side of conflicts

What does it mean if two people do the same thing in two different ways?
What if you work on the same file but do two different things in the different
sections?
What if you do something, don’t tell someone from 6 months, and then try to combine
it with other people’s work?
How are conflicts avoided in other work? (Only one person working at once?
Declaring what you are doing before you start, if there is any chance someone else
might do the same thing, helps.)
Minor conflicts (two people revise spelling) vs semantic (two people rewrite a function
to add two different new features). How did Git solve these in branching/merging
easily?

Now we can go to show how Git controls when there is actually a conflict.

Preparing a conflict

Instructor note

We do the following together as type-along/demo.

 If you got stuck previously or joined later

If you got stuck previously or joined later, you can apply the commands below. But skip
this box if you managed to create branches.

Or call a helper to un-stuck it for you.

We will make two branches, make two conflicting changes (both increase and decrease the
amount of cilantro), and later we will try to merge them together.

$ cd .. # step out of the current directory

$ git clone https://github.com/coderefinery/recipe-before-merge.git
$ cd recipe-before-merge

$ git remote remove origin

$ git graph

Create two branches from main : one called like-cilantro , one called dislike-
cilantro :

On the two branches make different modifications to the amount of the same ingredient:
On the branch like-cilantro we have the following change:

And on the branch dislike-cilantro we have the following change:

Merging conflicting changes

What do you expect will happen when we try to merge these two branches into main?

 Note

In case git switch does not work, your Git version might be older than from 2019. On
older Git it is git checkout instead of git switch .

$ git branch like-cilantro main
$ git branch dislike-cilantro main

$ git diff main like-cilantro

diff --git a/ingredients.txt b/ingredients.txt
index e83294b..6cacd50 100644
--- a/ingredients.txt
+++ b/ingredients.txt
@@ -1,4 +1,4 @@
-* 1 tbsp cilantro
+* 2 tbsp cilantro
 * 2 avocados
 * 1 chili
 * 1 lime

$ git diff main dislike-cilantro

diff --git a/ingredients.txt b/ingredients.txt
index e83294b..6484462 100644
--- a/ingredients.txt
+++ b/ingredients.txt
@@ -1,4 +1,4 @@
-* 1 tbsp cilantro
+* 1/2 tbsp cilantro
 * 2 avocados
 * 1 chili
 * 1 lime

The first merge will work:

But the second will fail:

Without conflict Git would have automatically created a merge commit, but since there is a
conflict, Git did not commit:

Git won’t decide which to take and we need to decide. Observe how Git gives us clear
instructions on how to move forward.

Let us inspect the conflicting file:

$ git switch main
$ git status
$ git merge like-cilantro

Updating 4e03d4b..3caa632
Fast-forward
 ingredients.txt | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

$ git merge dislike-cilantro

Auto-merging ingredients.txt
CONFLICT (content): Merge conflict in ingredients.txt
Automatic merge failed; fix conflicts and then commit the result.

$ git status

You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

Unmerged paths:
 (use "git add <file>..." to mark resolution)

both modified: ingredients.txt

no changes added to commit (use "git add" and/or "git commit -a")

Git inserted resolution markers (the <<<<<<< , >>>>>>> , and =======).

Try also git diff :

git diff now only shows the conflicting part, nothing else.

Conflict resolution

We have to edit the code/text between the resolution markers. You only have to care about
what Git shows you: Git stages all files without conflicts and leaves the files with conflicts
unstaged.

$ cat ingredients.txt

<<<<<<< HEAD
* 2 tbsp cilantro
=======
* 1/2 tbsp cilantro
>>>>>>> dislike-cilantro
* 2 avocados
* 1 chili
* 1 lime
* 1 tsp salt
* 1/2 onion

$ git diff

diff --cc ingredients.txt
index 6cacd50,6484462..0000000
--- a/ingredients.txt
+++ b/ingredients.txt
@@@ -1,4 -1,4 +1,10 @@@
++<<<<<<< HEAD
 +* 2 tbsp cilantro
++=======
+ * 1/2 tbsp cilantro
++>>>>>>> dislike-cilantro
 * 2 avocados
 * 1 chili
 * 1 lime

<<<<<<< HEAD
* 2 tbsp cilantro
=======
* 1/2 tbsp cilantro
>>>>>>> dislike-cilantro

 Steps to resolve a conflict

Check status with git status and git diff .
Decide what you keep (the one, the other, or both or something else). Edit the file to
do this.

Remove the resolution markers, if not already done.
The file(s) should now look exactly how you want them.

Check status with git status and git diff .
Tell Git that you have resolved the conflict with git add ingredients.txt (if you use
the Emacs editor with a certain plugin the editor may stage the change for you after
you have removed the conflict markers).
Verify the result with git status .
Finally commit the merge with only git commit . Everything is pre-filled.

Exercise: Create and resolve a conflict

✍️ Conflict-1: Create another conflict and resolve

In this exercise, we repeat almost exactly what we did above with a different ingredient.

1. Create two branches before making any modifications.
2. Again modify some ingredient on both branches.
3. Merge one, merge the other and observe a conflict, resolve the conflict and commit

the merge.
4. What happens if you apply the same modification on both branches?
5. If you create a branch like-avocados , commit a change, then from this branch create

another banch dislike-avocados , commit again, and try to merge both branches into
main you will not see a conflict. Can you explain, why it is different this time?

✔︎Solution

4: No conflict in this case if the change is the same.

5: No conflict in this case since in Git history one change happened after the other.
The two changes are related and linked by Git history and one is a Git ancestor of the
other. Git will assume that since we applied one change after the other, we meant this.
There is nothing to resolve.

Optional exercises with conflict resolution

✍️ (optional) Conflict-2: Resolve a conflict when rebasing a branch

1. Create two branches where you anticipate a conflict.
2. Try to merge them and observe that indeed they conflict.
3. Abort the merge with git merge --abort .

4. What do you expect will happen if you rebase one branch on top of the other? Do you
anticipate a conflict? Try it out.

✔︎Solution

Yes, this will conflict. If it conflicts during a merge, it will also conflict during rebase
but the conflict resolution looks slightly different: You still need to look for conflict
markers but you tell Git that you resolved a conflict with git add and then you
continue with git rebase --continue . Follow instructions that you get from the Git
command line.

✍️ (optional) Conflict-3: Resolve a conflict using mergetool

Again create a conflict (for instance disagree on the number of avocados).
Stop at this stage:

Instead of resolving the conflict manually, use a visual tool (requires installing one of
the visual diff tools):

Your current branch is left, the branch you merge is right, result is in the middle.
After you are done, close and commit, git add is not needed when using git
mergetool .

If you have not instructed Git to avoid creating backups when using mergetool, then to be
on the safe side there will be additional temporary files created. To remove those you can
do a git clean after the merging.

To view what will be removed:

Auto-merging ingredients.txt
CONFLICT (content): Merge conflict in ingredients.txt
Automatic merge failed; fix conflicts and then commit the result.

$ git mergetool

https://coderefinery.github.io/installation/difftools/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/mergetool.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/mergetool.png

To remove:

To configure Git to avoid creating backups at all:

Using “ours” or “theirs” strategy

Sometimes you know that you want to keep “ours” version (version on the branch you are
on) or “theirs” (version on the merged branch).
Then you do not have to resolve conflicts manually.
See merge strategies.

Example (merge and in doubt take the changes from current branch):

Or (merge and in doubt take the changes from less-avocados branch):

Aborting a conflicting merge

Sometimes you get a merge conflict but realize that you can’t solve it without talking to a
colleague (who created the other change) first. What to do?

You can abort the merge and postponing conflict resolution by resetting the repository to
HEAD (last committed state):

$ git clean -n

$ git clean -f

$ git config --global mergetool.keepBackup false

$ git merge -s recursive -Xours less-avocados

$ git merge -s recursive -Xtheirs less-avocados

https://git-scm.com/docs/merge-strategies

The repository looks then exactly as it was before the merge.

Avoiding conflicts

Human measures
Think and plan to which branch you will commit to.
Do not put unrelated changes on the same branch.

Collaboration measures
Open an issue and discuss with collaborators before starting a long-living branch.

Project layout measures
Modifying global data often causes conflicts.
Modular programming reduces this risk.

Technical measures
Share your changes early and often - this is one of the happy, rare circumstances
when everyone doing the selfish thing (e.g. git push as early as practical) results in
best case for everyone!
Pull/rebase often to keep up to date with upstream.
Resolve conflicts early.

💬 Discussion

Discuss how Git handles conflicts compared to services like Google Drive.

 Keypoints

Conflicts often appear because of not enough communication or not optimal
branching strategy.

Using the Git staging area

 Objectives

Learn how to tell a story with your commit history.
Demystify the Git staging area.

Instructor note

10 min teaching/type-along
10 min exercise

$ git merge --abort

Commit history is telling a story

Your current code is very important, but the history can be just as important - it tells a story
about how your code came to be.

Each individual line of code rarely stands alone.
You often want to see all the related changes together.
But you also hardly ever do one thing at once.

Along with your code, Git creates a history for you, and if your history is clear then you are a
long way to organized code.

💬 Discussion

Here are five types of history. What are the advantages and disadvantages of each, when
you look at it later?

Example 1:

Example 2 (newest commit is on top):

Example 3:

Example 4 (newest commit is on top):

b135ec8 add features A, B, and C

6f0d49f implement feature C
fee1807 implement feature B
6fe2f23 implement feature A

ab990f4 saving three months of miscellaneous work I forgot to commit

bf39f9d more work on feature B
45831a5 removing debug prints for feature A and add new file
bddb280 more work on feature B and make feature A compile again
72d78e7 feature A did not work and started work on feature B
b135ec8 now feature A should work
72e0211 another fix to make it compile
61dd3a3 forgot file and bugfix
49dc419 wip (work in progress)

Example 5 (newest commit is on top):

Discuss these examples. Can you anticipate problems?

We want to have nice commits. But we also want to “save often” (checkpointing) - how can
we have both?

We will now learn to create nice commits using git commit --patch and/or the staging
area.
Staging addresses the issue of having unrelated changes in the same commit or having
one logical change spread over several commits.
The staging area isn’t the only way to organize your history nicely, some alternatives are
discussed at the end of the lesson.

Interactive commits

The simplest ways to solve this is to do interactive commits: the git commit --patch
option (or git commit -p for short).
It will present you with every change you have made individually, and you can decide
which ones to commit right now.
Reference and key commands

git commit --patch to start the interactive commit
y to use the change
n to skip the change
s (split) if there are several changes grouped together, but separated by a blank line,

split them into separate choices.
q aborts everything.
? for more options.

The -p option is also available on commit , restore , checkout , reset , and add .

Exercise: Interactive commits

✍️ Staging-1: Perform an interactive commit

One option to help us create nice logical commits is to stage interactively with git commit
--patch :

1949dc4 Work of 2020-04-07
a361dd3 Work of 2020-04-06
1172e02 Work of 2020-04-03
e772d78 Work of 2020-04-02

1. Make two changes in instructions.txt , at the top and bottom of the file. Make sure
that they are separated by at least several unmodified lines.

2. Run git commit --patch . Using the keystrokes above, commit one of the changes.
3. Do it again for the other change.
4. When you’re done, inspect the situation with git log , git status , git diff and

git diff --staged .
5. When would this be useful?

✔︎Solution

This can be useful if you have several modification in a file (or several files) but you
decide that it would be beneficial to save them as two (or more) separate commits.

The staging area

The interactive commits above are great, but what if there are so many changes that you
can’t sort them out in one shot?
What if you make progress and want to record it somehow, but it’s not ready to be
committed?
The staging area is a place to record things before committing.

Instructor note

We give two examples and the instructor can pick one or both:

Analogy using moving boxes
Analogy using shopping receipts

💬 Discussion

Analogy using moving boxes

You’re moving and you have a box to pack your things in.
You can put stuff into the box, but you can also take stuff out of the box.
You wouldn’t want to mix items from the bathroom, kitchen, and living room into the
same box.
The box corresponds to the staging area of Git, where you can craft your commits.
Committing is like sealing the box and sticking a label on it.
You wouldn’t want to label your box with “stuff”, but rather give a more descriptive
label.
See also https://dev.to/sublimegeek/git-staging-area-explained-like-im-five-1anh

Analogy using shopping receipts

https://dev.to/sublimegeek/git-staging-area-explained-like-im-five-1anh

You need to go shopping and buy some stuff for work and for home. You need two
separate receipts.
Bad idea: go through the store get home stuff, pay, start at the beginning and go
through the store again. This is inefficient and annoying.
What you actually do:

Go through the store and put everything you need in your shopping basket.
Get to the check-out. Put your home stuff on the conveyor belt (git add). Check
both the belt (git diff --staged) and your basket (git diff) to make sure you
got all your home stuff.
Pay (git commit)
Repeat for work stuff.

In order to keep organized, you have to use multiple locations to stage things in sequence.

Staging area commands

The staging area is a middle ground between what you have done to your files (the working
directory) and what you have last committed (the HEAD commit). Just like the name implies,
it lets you prepare (stage) what the next commit will be and most importantly give you tools
to easily know what is going on. This adds some complexity but also adds more flexibility to
selectively prepare commits since you can modify and stage several times before
committing.

git add stages/prepares for the next commit:

git commit creates a new commit:

 git add
 [project*] <------------ project*
 ^
 | modify with editor
 |
 HEAD . project
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

git reset --soft HEAD~1 (move HEAD back by one but keep changes and stage them) would
do the opposite of git commit. (in this case, HEAD is literally this - not a replacement)

Going back to the last staged version:

Unstaging changes with git restore --staged:

 HEAD . project
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 HEAD~2 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

 git restore
 [project*] ------------> project*

 HEAD .
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

Discarding unstaged changes:

Comparing:

 git restore --staged
 ------------> project*

 HEAD .
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

 project*
 |
 | git restore
 v
 HEAD . project
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

 git diff
 [project*] <-----------> project*
 ^ ^
 | git diff --staged | git diff HEAD
 v v
 HEAD .
 | .
 | .
 | .
 HEAD~1 .
 | .
 | .
 | .
 .
 .git . working directory
(history) . (files we see)

commit

W
O

RK
IN

G
 D

IR

CO
M

M
IT

TE
D

ST
AG

ED

restore

add commit

restore reset

diff HEAD

diff diff --staged

The different states of the repository and the commands to move from one to another.

Exercise: Using the staging area

✍️ Staging-2: Use the staging area to make a commit in two steps

1. In your recipe example, make two different changes to ingredients.txt and
instructions.txt which do not go together.

2. Use git add to stage one of the changes.
3. Use git status to see what’s going on, and use git diff and git diff --staged to

see the changes.
4. Feel some regret and unstage the staged change.

💬 Discussion

When is it better to “save” a change as commit, when is it better to “save” it with git
add ?
Is it a problem to commit many small changes?

 Keypoints

The staging area helps us to create well-defined commits.

Undoing and recovering

 Objectives

Learn to undo changes safely
See when undone changes are permanently deleted and when they can be retrieved

Instructor note

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/staging-basics.svg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/staging-basics.svg

25 min teaching/type-along
25 min exercise

One of the main points of version control is that you can go back in time to recover. Unlike
this xkcd comic implies: https://xkcd.com/1597/

In this episode we show a couple of commands that can be used to undo mistakes. We also
list a couple of common mistakes and discuss how to recover from them. Some commands
preserve the commit history and some modify commit history. Modifying history? Isn’t a
“commit” permanent?

You can modify old commit history.
But if you have shared that history already, modifying it can make a huge mess.

 It is almost always possible to recover

As long as you commit something once (or at least git add it), you can almost always go
back to it, no matter what you do. But you may need to ask Stack Overflow or your local
guru… until that guru becomes you.

 Nice resource to visually simulate Git operation

git-sim is a nice resouce to visually simulate Git operations listed in this episode below, in
your own repos with a single terminal command.

Undoing your recent, uncommitted and unstaged changes
(preserves history)

 Note

In case git restore does not work, your Git version might be older than from 2019. On
older Git it is git checkout instead of git restore .

You do some work, and want to undo your uncommitted and unstaged modifications. You
can always do that with:

git restore . (the dot means “here and in all folders below”)

You can also undo things selectively:

git restore -p (decide which portions of changes to undo) or git restore PATH (decide
which path/file)

https://xkcd.com/1597/
https://github.com/initialcommit-com/git-sim#video-animation-examples

If you have staged changes, you have at least two options to undo the staging:

git restore --staged . followed by git status and git restore .
git reset --hard HEAD throws away everything that is not in last commit (HEAD - this

literal word, this isn’t a placeholder)

Reverting commits (preserves history)

Imagine we made a few commits. We realize that the latest commit e02efcd was a mistake
and we wish to undo it:

A safe way to undo the commit is to revert the commit with git revert :

This creates a new commit that does the opposite of the reverted commit. The old commit
remains in the history:

You can revert any commit, no matter how old it is. It doesn’t affect other commits you have
done since then - but if they touch the same code, you may get a conflict (which we’ll learn
about later).

Exercise: Revert a commit

$ git log --oneline

e02efcd (HEAD -> main) not sure this is a good idea
b4af65b improve the documentation
e7cf023 don't forget to enjoy
79161b6 add half an onion
a3394e3 adding README
3696246 adding instructions
f146d25 adding ingredients

$ git revert e02efcd

$ git log --oneline

d3fc63a (HEAD -> main) Revert "not sure this is a good idea"
e02efcd not sure this is a good idea
b4af65b improve the documentation
e7cf023 don't forget to enjoy
79161b6 add half an onion
a3394e3 adding README
3696246 adding instructions
f146d25 adding ingredients

✍️ Undoing-1: Revert a commit

Create a commit (commit A).
Revert the commit with git revert (commit B).
Inspect the history with git log --oneline .
Now try git show on both the reverted (commit A) and the newly created commit
(commit B).

Adding to the previous commit (modifies history)

Sometimes we commit but realize we forgot something. We can amend to the last commit:

This can also be used to modify the last commit message.

Note that this will change the commit hash. This command modifies the history. This means
that we avoid this command on commits that we have shared with others.

Exercise: Modify a previous commit

✍️ Undoing-2: Modify a previous commit

1. Make an incomplete change to the recipe or a typo in your change, git add and git
commit the incomplete/unsatisfactory change.

2. Inspect the unsatisfactory but committed change with git show . Remember or write
down the commit hash.

3. Now complete/fix the change but instead of creating a new commit, add the
correction to the previous commit with git add , followed by git commit --amend .
What changed?

✔︎Solution

One thing that has changed now is the commit hash. Modifying the previous commit
has changed the history. This is OK to do on commits that other people don’t depend
on yet.

Rewinding branches (modifies history)

You can reset branch history to move your branch back to some point in the past.

git reset --hard HASH will force a branch label to any other point. All other changes are
lost (but it is possible to recover if you force reset by mistake).

$ git commit --amend

Be careful if you do this - it can mess stuff up. Use git graph a lot before and after.

Exercise: Git reset

✍️ Undoing-3: Destroy our experimentation in this episode

After we have experimented with reverts and amending, let us destroy all of that and get
our repositories to a similar state.

First, we will look at our history (git log / git graph) and find the last commit HASH
before our tests.
Then, we will git reset --hard HASH to that.
Then, git graph again to see what happened.

Recovering from committing to the wrong branch

It is easy to forget to create a branch or to create it and forget to switch to it when
committing changes.

Here we assume that we made a couple of commits but we realize they went to the wrong
branch.

Solution 1 using git cherry-pick:

$ git log --oneline

d3fc63a (HEAD -> main) Revert "not sure this is a good idea"
e02efcd not sure this is a good idea
b4af65b improve the documentation
e7cf023 don't forget to enjoy
79161b6 add half an onion
a3394e3 adding README
3696246 adding instructions
f146d25 adding ingredients

$ git reset --hard b4af65b

HEAD is now at b4af65b improve the documentation

$ git log --oneline

b4af65b (HEAD -> main) improve the documentation
e7cf023 don't forget to enjoy
79161b6 add half an onion
a3394e3 adding README
3696246 adding instructions
f146d25 adding ingredients

1. Make sure that the correct branch exists and if not, create it. Make sure to create it from
the commit hash where you wish you had created it from: git branch BRANCHNAME HASH

2. Switch to the correct branch.
3. git cherry-pick HASH can be used to take a specific commit to the current branch.

Cherry-pick all commits that should have gone to the correct branch, from oldest to most
recent.

4. Rewind the branch that accidentally got wrong commits with git reset --hard (see also
above).

Solution 2 using git reset --hard (makes sense if the correct branch should contain all
commits of the accidentally modified branch):

1. Create the correct branch, pointing at the latest commit: git branch BRANCHNAME .
2. Check with git log or git graph that both branches point to the same, latest, commit.
3. Rewind the branch that accidentally got wrong commits with git reset --hard (see also

above).

Recovering from merging/pulling into the wrong branch

git merge , git rebase , and git pull modify the current branch, never the other branch.
But sometimes we run this command on the wrong branch.

1. Check with git log the commit hash that you would like to rewind the wrongly
modified branch to.

2. Rewind the branch that accidentally got wrong commits with git reset --hard HASH (see
also above).

Recovering from conflict after pulling changes

Pulling changes with git pull can create a conflict since git pull always also includes a
git merge (more about this in the collaborative Git lesson).

The recovery is same as described in Conflict resolution. Either resolve conflicts or abort the
merge with git merge --abort .

✍️ Undoing-4: Test your understanding

1. What happens if you accidentally remove a tracked file with git rm , is it gone
forever?

2. Is it OK to modify commits that nobody has seen yet?
3. What situations would justify to modify the Git history and possibly remove commits?

✔︎Solution

https://coderefinery.github.io/git-collaborative/

1. It is not gone forever since git rm creates a new commit. You can revert the
commit to get the file back.

2. If you haven’t shared your commits with anyone it can be alright to modify them.
3. If you have shared your commits with others (e.g. pushed them to GitHub), only

extraordinary conditions would justify modifying history. For example to remove
sensitive or secret information.

Interrupted work

 Objectives

Learn to switch context or abort work without panicking.

Instructor note

10 min teaching/type-along
15 min exercise

 Keypoints

There is almost never reason to clone a fresh copy to complete a task that you have in
mind.

Frequent situation: interrupted work

We all wish that we could write beautiful perfect code. But the real world is much more
chaotic:

You are in the middle of a “Jackson-Pollock-style” debugging spree with 27 modified files
and debugging prints everywhere.
Your colleague comes in and wants you to fix/commit something right now.
What to do?

Git provides lots of ways to switch tasks without ruining everything.

Option 1: Stashing

The stash is the first and easiest place to temporarily “stash” things.

git stash will put working directory and staging area changes away. Your code will be
same as last commit.
git stash pop will return to the state you were before. Can give it a list.

git stash list will list the current stashes.
git stash save NAME is like the first, but will give it a name. Useful if it might last a while.
git stash save [-p] [filename] will stash certain files files and/or by patches.
git stash drop will drop the most recent stash (or whichever stash you give).

The stashes form a stack, so you can stash several batches of modifications.

Exercise: Stashing

✍️ Interrupted-1: Stash some uncommitted work

1. Make a change.
2. Check status/diff, stash the change with git stash , check status/diff again.
3. Make a separate, unrelated change which doesn’t touch the same lines. Commit this

change.
4. Pop off the stash you saved with git stash pop , and check status/diff.
5. Optional: Do the same but stash twice. Also check git stash list . Can you pop the

stashes in the opposite order?
6. Advanced: What happens if stashes conflict with other changes? Make a change and

stash it. Modify the same line or one right above or below. Pop the stash back. Resolve
the conflict. Note there is no extra commit.

7. Advanced: what does git graph show when you have something stashed?

✔︎Solution

5: Yes you can. With git stash pop INDEX you can decie which stash index to pop.

6: In this case Git will ask us to resolve the conflict the same way when resolving
conflicts between two branches.

7: It shows an additional commit hash with refs/stash .

Option 2: Create branches

You can use branches almost like you have already been doing if you need to save some work.
You need to do something else for a bit? Sounds like a good time to make a feature branch.

You basically know how to do this:

$ git switch --create temporary # create a branch and switch to it
$ git add PATHS # stage changes
$ git commit # commit them
$ git switch main # back to main, continue your work there ...
$ git switch temporary # continue again on "temporary" where you left off

Later you can merge it to main or rebase it on top of main and resume work.

Storing various junk you don’t need but don’t want to get rid of

It happens often that you do something and don’t need it, but you don’t want to lose it right
away. You can use either of the above strategies to stash/branch it away: using branches is
probably better because branches are less easily overlooked if you come back to the
repository in few weeks. Note that if you try to use a branch after a long time, conflicts might
get really bad but at least you have the data still.

Aliases and configuration

 Objectives

Learn to use aliases for most common commands.

Are you getting tired of typing so much? In Git you can define aliases (shortcuts):

These are great because they can save you time typing.
But it’s easy to forget them, get confused, or be inconsistent with your colleagues.

There is plenty of other configuration for Git, that can make it nicer.

Aliases

Aliases offer a way to improve the usability of Git: for example git ci instead of git
commit .
Aliases are based on simple string replacement in the command.
Aliases can either be specific to a repository or global.

Global aliases help you do the things you are used to across Git projects.
Per-project aliases can also be created.

Global aliases are stored in ~/.gitconfig .

Example alias: git graph

A very useful shortcut which we use a lot in our workshops:

$ git config --global alias.graph "log --all --graph --decorate --oneline"
$ cd your_git_repository
$ git graph

Using external commands

It is possible to call external commands using the exclamation mark character “!”. In this
example here we create a local alias which is stored in .git/config and not synchronized
with remotes:

💬 Food for thought: When to alias?

How many times should you wait before aliasing a command?
Do you believe a list of generic two-letter acronyms for common commands will save
your time?

List of aliases the instructors use

You are welcome to reuse, suggest, improve. You can see your current aliases in
~/.gitconfig .

Here is what they do:

ap : add, selecting parts individually, interactively.
br : branch (obvious)
ci : commit (check in), with -v option for clarity
cip : commit, selecting parts individually, interactively.
cl : clone, init submodules (submodules are an advanced topic)
di : diff (obvious)
dic : diff of staging area vs last commit (what is about to be committed)

$ cd your_git_repository
$ git config alias.hi '!echo hello'
$ git hi

$ git config --global alias.ap "add --patch"
$ git config --global alias.br branch
$ git config --global alias.ci "commit -v"
$ git config --global alias.cip "commit --patch -v"
$ git config --global alias.cl "clone --recursive"
$ git config --global alias.di diff
$ git config --global alias.dic "diff --staged --color-words"
$ git config --global alias.diw "diff --color-words"
$ git config --global alias.dis "!git --no-pager diff --stat"
$ git config --global alias.fe fetch
$ git config --global alias.graph "log --all --graph --decorate --oneline"
$ git config --global alias.rem remote
$ git config --global alias.st status
$ git config --global alias.su "submodule update --init --recursive"

diw : a word diff, color. Useful for small changes.
dis : a “diffstat”: what files are changed, not contents
fe : fetch (obvious)
graph : show whole git graph (so useful, some of us call it l)
rem : remote (obvious)
st : status (obvious)
su : submodule update (advanced)

A useful setting for the p aliases:

Advanced aliases

These are advanced aliases and configuration options. We won’t explain them, but if you are
bored, have some time, or want to go deeper, try to figure out what they do. You might want
to check the Git manual pages!

Advanced Git configuration

Besides aliases, you can do plenty of other configuration of git . Here are some of the most
common ones:

$ git config --global interactive.singlekey true

$ git config --global alias.cif "commit -v -p --fixup"
$ git config --global alias.rb "rebase --autosquash"
$ git config --global alias.rbi "rebase --interactive --autosquash"
$ git config --global alias.rbis "rebase --interactive --autosquash --autostash"
$ git config --global alias.rbs "rebase --autosquash --autostash"
$ git config --global alias.rec "!git --no-pager log --oneline --graph --decorate
@{upstream}^^^..HEAD"
$ git config --global alias.ls-ignored "ls-files -o -i --exclude-standard"
$ git config --global alias.new "log HEAD..HEAD@{upstream}"
$ git config --global alias.news "log --stat HEAD..HEAD@{upstream}"
$ git config --global alias.newd "log --patch --color-words HEAD..HEAD@{upstream}"
$ git config --global alias.newdi "diff --color-words HEAD...HEAD@{upstream}"
$ git config --global alias.rec "!git --no-pager log --oneline --graph --decorate
@{upstream}^^^..HEAD"
$ git config --global alias.reca "!git --no-pager log --oneline --graph --decorate -n10
--all"
$ git config --global alias.recd "log --decorate --patch @{upstream}^^^..HEAD"
$ git config --global alias.recs "!git --no-pager log --oneline --graph --decorate
@{upstream}^^^..HEAD --stat"

Do you get tired of typing and copying and pasting your remote names all the time, like
git@github.com:myusername ? You can create remote aliases like this:

Then, when you add a remote ghu:recipe , it will automatically be translated to
git@github.com:/username/recipe using a simple prefix matching.

 Keypoints

If you are frustrated about remembering a command, you should create an alias.

Git under the hood

 Objectives

Verify that branches are pointers to commits and extremely lightweight.

Instructor note

10 min teaching/type-along
15 min exercise

$ git config --global interactive.singlekey true
$ git config --global core.pager "less -RS"
$ git config --global core.excludesfile ~/.gitignore
$ git config --global merge.conflictstyle diff3
$ git config --global diff.wordRegex "[a-zA-Z0-9_]+|[^[:space:]]"
$ git config --global diff.mnemonicPrefix true

$ git config --global url.git@github.com:.insteadOf gh:
$ git config --global url.git@github.com:/username/.insteadOf ghu:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/stranger.jpg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/stranger.jpg

Down the rabbit hole

When working with Git, you will never need to go inside .git, but in this exercise we will, in
order to learn about how branches are implemented in Git.

For this exercise create a new repository and commit a couple of changes.

Now that we’ve made a couple of commits let us look at what is happening under the hood.

Git stores everything under the .git folder in your repository. In fact, the .git directory is the
Git repository.

Previously when you wrote the commit messages using your text editor, they were in fact
saved to COMMIT_EDITMSG .

Each commit in Git is stored as an object. This object contains information about the author
and the commit message. A commit object references a tree object that lists the files present in
the directory at the time. Tree objects reference blob objects (that record the state of each
file) or other tree objects.

Commits are referenced by a SHA-1 hash (a 40-character hexadecimal string).

$ cd .git
$ ls -l

drwxr-xr-x - user 25 Aug 15:51 branches
.rw-r--r-- 499 user 25 Aug 15:52 COMMIT_EDITMSG
.rw-r--r-- 92 user 25 Aug 15:51 config
.rw-r--r-- 73 user 25 Aug 15:51 description
.rw-r--r-- 21 user 25 Aug 15:51 HEAD
drwxr-xr-x - user 25 Aug 15:51 hooks
.rw-r--r-- 137 user 25 Aug 15:52 index
drwxr-xr-x - user 25 Aug 15:51 info
drwxr-xr-x - user 25 Aug 15:52 logs
drwxr-xr-x - user 25 Aug 15:52 objects
drwxr-xr-x - user 25 Aug 15:51 refs

States of a Git file. Image from the Pro Git book. License CC BY 3.0.

Once you have several commits, each commit object also links to the hash of the previous
commit(s) (there is more than one previous commit for for merge commits). The commits
form a directed acyclic graph (do not worry if the term is not familiar).

A commit and its parents. Image from the Pro Git book. License CC BY 3.0.

All branches and tags in Git are pointers to commits.

Git is basically a content-addressed storage system

CAS: “mechanism for storing information that can be retrieved based on its content, not
its storage location”
Content address is the content digest (SHA-1 checksum)
Stored data does not change - so when we modify commits, we always create new
commits. Git doesn’t delete these right away, which is why it is very hard to lose data if you
commit it once.

Let us poke a bit into raw objects! Start with:

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/commit-and-tree.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/commit-and-tree.png
https://git-scm.com/book/
http://eagain.net/articles/git-for-computer-scientists/
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/commits-and-parents.png
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/commits-and-parents.png
https://git-scm.com/book/
https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage

Then explore the tree object, then the file object, etc. recursively using the hashes you
see.

Demonstration: experimenting with branches

Let us lift the hood and create few branches manually. The goal of this exercise is to
hopefully create an “Aha!” moment and provide us a good understanding of the underlying
model.

We are starting from the main branch and create an idea branch:

Now let us go in:

Let us check what the idea file looks like (do not worry if the hash is different):

$ git cat-file -p HEAD

$ git status

On branch main
nothing to commit, working tree clean

$ git switch --create idea

Switched to a new branch 'idea'

$ git branch

* idea
 main

$ cd .git
$ cd refs/heads
$ ls -l

.rw-r--r-- 41 user 25 Aug 15:54 idea

.rw-r--r-- 41 user 25 Aug 15:52 main

$ cat idea

045e3db14740c60684d745e5fb891ae71e335611

Now let us replicate this file:

Let us go up two levels and inspect the file HEAD :

Let us open this file and change it to:

Now we are ready for the aha moment! First let us go back to the working area:

Now - on which branch are we?

Demonstration: If you add it, you don’t lose it (for a while)

A common way to (apparently) lose work is to use git add indiscriminately.

You make some changes to a file, (let us call this version A) you git add them, then you make
some other changes (let us call this version B) and you git add those again.

$ cp idea idea-2
$ cp idea idea-3
$ cp idea idea-4
$ cp idea idea-5

$ cd ../..
$ cat HEAD

ref: refs/heads/idea

ref: refs/heads/idea-3

$ cd ..

$ git branch

 idea
 idea-2
* idea-3
 idea-4
 idea-5
 main

Now version A is apparently lost, and if we realize that we need it back we typically click
nervously on the “undo” arrow of our editor.

But fear not! Try this.

1. Create a file named test-add with the following command:

1. Add it to the repository

1. Now change the content of the file to be

1. And repeat the add command

1. Apparently we have lost the previous version of the file. But it is actually there, stored in
a dangling blob object (which is not referenced by any other objects) We can see this with
the command fsck :

We can see the content of that blob by passing its hash (shortened for convenience) to the
git cat-file -p command:

💬 Discussion

echo 'Once a file has been git added, it is hard to lose!' > test-add

$ git add test-add

Ops

$ git add test-add

$ git fsck
Checking object directories: 100% (256/256), done.
dangling blob dc3b15f60045eea7a87639436ed75021130579e0

$ git cat-file -p dc3b
Once a file has been git added, it is hard to lose!

Discuss the findings with other course participants.

Quick reference

Other cheatsheets

Detailed 2-page Git cheatsheet
Interactive Git cheatsheet

Glossary

alias

With aliases you can define your own shortcuts for Git commands.

version control system

A system that records changes to a file or set of files over time so that you can recall
specific versions later.

git

Implementation of a version control system. Currently the most popular one.

commit

As a verb, the process of recording more changes. As a noun, the name of the record of
changes. A commit is identified by something such as 554c187 .

working directory

workspace

the actual files you see and edit

staging area

Place files go after git add and before git commit

hash

Unique reference of any commit or state. Comes from hash functions such as MD5 or
SHA1.

branch

One line of work. Different branches can exist at the same time and split/merge.
Committing on a branch updates that branch.

tag

Like a branch in that it points to a commit for reference. It is designed to be permanent an
not updated.

HEAD

Pointer to the most recent commit on the current branch.

https://aaltoscicomp.github.io/cheatsheets/git-the-way-you-need-it-cheatsheet.pdf
http://www.ndpsoftware.com/git-cheatsheet.html
https://en.wikipedia.org/wiki/Hash_function

remote

Roughly, another server that holds .git.

origin

Default name for a remote repository.

repository

One collection of files managed by Git. It contains entire history of all files managed by
git. GitHub has one repository as one GitHub repository. VS Code has one repository as
one directory you can open. The command line has one repository as one directory.

clone

As a verb, the process of making a copy of a repository locally. It brings in all history and
all files. (As a noun, the copy that was made when cloning).

GitHub repository

The files from the Git repository, but also other things from GitHub such as access
permissions, issues, and pull requests.

upstream

The original repository from which the code comes. If you fork the repository, it is your
upstream and it is easy to send changes back to there.

fork

As a noun: a one person’s copy of a repository. As a verb: making that copy. As a verb on
GitHub: Making a copy of a repository linked to the original. It is easy to send changes to
the original

issue

Within a web repository like GitHub, discussion of a topic, for example a problem or
improvement suggestion. These are a property of the web platform and not of the Git
program itself.

pull request

A GitHub concept: change proposal. A proposal to merge one branch into another.
Usually used to contribute code back to upstream.

push

Moving changes from your local copy to another copy

pull

Getting changes from another copy to your own copy. git pull does this fetch, and also
tries to automatically merge.

master

Default name for main branch on Git. Depending on the configuration and service, the
default branch is sometimes main. In this lesson we configure Git so that the default
branch is called main to be more consistent with GitHub and GitLab.

main

Default name for main branch on GitLab and GitHub. In this lesson we configure Git so
that the default branch is called main to be more consistent with GitHub and GitLab.

merge

merging

Bringing changes from one branch into another, either as a noun or verb.

VS Code

A text editor and development environment by Microsoft. It’s quite popular, partly
because it is powerful and easy to use. VS Codium is the same but without Microsoft
tracking.

Commands we use

Setup:

git config : edit configuration options
git init -b main : create new repository with main as the default branch

See our status:

git status : see status of files - use often!
git log : see history of commits and their messages, newest first
git graph : see a detailed graph of commits. Create this command with git config --
global alias.graph "log --all --graph --decorate --oneline"

git diff : show difference between working directory and last commit
git diff --staged : show difference between staging area and last commit
git show COMMIT : inspect individual commits

General work:

git add FILE :
Add a new file
Add a file to staging

git commit : record a version, add it to current branch
git commit --amend : amend our last commit
git branch : show which branch we’re on
git branch NAME : create a new branch called “name”
git restore FILE : restore last committed/staged version of FILE, losing unstaged

changes

https://vscodium.com/

git switch --create BRANCH-NAME : create a new branch and switch to it
git revert HASH : create a new commit which reverts commit HASH
git reset --soft HASH : remove all commits after HASH, but keep their modifications as

staged changes
git reset --hard HASH : remove all commits after HASH, permanently throwing away

their changes
git merge BRANCH-NAME : merge branch BRANCH-NAME into current branch
git grep PATTERN : search for patterns in tracked files
git annotate FILE : find out when a specific line got introduced and by whom
git bisect : find a commit which broke some functionality

Customizing Git

Shell prompt

Instructor note

Here the instructor can demonstrate how a context-aware and Git-aware shell prompt
can look like.

You can make your shell display contextual information about your Git state even at all times.

Here are few example projects that make this possible and easy:

https://github.com/jimeh/git-aware-prompt (bash)
https://ohmyz.sh/ (zsh)
https://github.com/oh-my-fish/oh-my-fish (fish)
https://github.com/magicmonty/bash-git-prompt (bash and fish)

More useful “diff” output

Delta is a syntax-highlighting pager for git, diff, and grep output. You can customize how you
want to highlight the “diff” output. It allows side-by-side view, word-level diff highlighting,
improved merge conflict display, and much more.

Other resources

Learn Git branching
The entire Pro Git book, written by Scott Chacon and Ben Straub
A successful Git branching model
Commit Often, Perfect Later, Publish Once: Git Best Practices
PeepCode Git Internals
Git Workflows for Pros: A Good Git Guide
Branch-per-Feature

https://github.com/jimeh/git-aware-prompt
https://ohmyz.sh/
https://github.com/oh-my-fish/oh-my-fish
https://github.com/magicmonty/bash-git-prompt
https://github.com/dandavison/delta
http://pcottle.github.io/learnGitBranching/
http://git-scm.com/book
http://nvie.com/posts/a-successful-git-branching-model/
http://sethrobertson.github.io/GitBestPractices/
https://github.com/pluralsight/git-internals-pdf/releases
https://www.toptal.com/git/git-workflows-for-pros-a-good-git-guide
http://dymitruk.com/blog/2012/02/05/branch-per-feature/

Git on XKCD
An efficient GIT workflow for mid/long term projects

List of exercises

This is a list of all exercises and solutions in this lesson, mainly as a reference for helpers and
instructors. This list is automatically generated from all of the other pages in the lesson. Any
single teaching event will probably cover only a subset of these, depending on their interests.

Instructor guide

Exercise preparation

Warning

Do this at least one day before the workshop!

Create two exercise repositories from https://github.com/cr-workshop-exercises/recipe-
book-template preserving history (this means not using “generating from template”)

https://github.com/cr-workshop-exercises/recipe-book
https://github.com/cr-workshop-exercises/recipe-book-recorded

You probably need to re-created them before the workshop even though they might
already exist from a previous workshop. Motivation: the repositories from a previous
workshop probably carry issues and pull requests and the network graph will differ from
what you want to show.
You can create these using git clone --mirror and git push --mirror to make sure to
copy all branches:

Reason why we create it under https://github.com/cr-workshop-exercises and not under
https://github.com/coderefinery is that we otherwise get a 100 pull requests over the next
few weeks which masks “real” pull requests from the project and the side effect would be
that nobody then reviews any “real” pull requests anymore.
Create one or two issues to both.
Create one or two pull requests to both.
In both, try to search for something in the recipes to trigger a search index update.

$ git clone --mirror git@github.com:coderefinery/recipe-book-template.git
$ cd recipe-book-template.git
$ git push --mirror git@github.com:cr-workshop-exercises/recipe-book-recorded.git
$ git push --mirror git@github.com:cr-workshop-exercises/recipe-book.git

http://xkcd.com/1597/
http://fle.github.io/an-efficient-git-workflow-for-midlong-term-projects.html
https://github.com/cr-workshop-exercises/recipe-book-template
https://github.com/cr-workshop-exercises/recipe-book-template
https://github.com/cr-workshop-exercises/recipe-book
https://github.com/cr-workshop-exercises/recipe-book-recorded
https://github.com/cr-workshop-exercises
https://github.com/coderefinery

Privacy

When presenting the material in a streamed and recorded workshop, make sure to only show
the https://github.com/cr-workshop-exercises/recipe-book-recorded repository.

Schedule Day 1

Times here are in CE(S)T.

08:50 - 09:00 (10 min) Soft start and icebreaker question
09:00 - 09:20 (20 min) Welcome and practical information
09:20 - 09:25 (05 min) Intro to day
09:25 - 09:35 (10 min) Motivation
09:35 - 10:05 (30 min) Copy and browse an existing project
10:05 - 10:15 (10 min) Break
10:15 - 11:00 (45 min) Committing changes
11:00 - 12:00 (60 min) Break
12:00 - 12:50 (50 min) Recap + Merging changes and contributing to the project
12:50 - 13:00 (10 min) Break
13:00 - 13:30 (30 min) Demonstrating conflict resolution, Q&A, feedback, and what will
we be doing tomorrow?

Schedule Day 2

Times here are in CE(S)T.

08:50 - 09:00 (10 min) Soft start and icebreaker question
09:00 - 09:10 (10 min) Recap
09:10 - 10:00 (50 min) Cloning a Git repository and working locally
10:00 - 10:10 (10 min) Break
10:10 - 11:00 (50 min) Inspecting history
11:00 - 12:00 (60 min) Break
12:00 - 12:50 (50 min) How to turn your project to a Git repo and share it
12:50 - 13:00 (10 min) Break
13:00 - 13:30 (30 min) Practical advise, Q&A, feedback, and what will we be doing
tomorrow?

Why we teach this lesson

Everyone should be using a version control system for their work, even if they’re working
alone. There are many version control systems out there, but Git is an industry standard and
even if one uses another system chances are high one still encounters Git repositories.

Specific motivations:

https://github.com/cr-workshop-exercises/recipe-book-recorded
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-intro/motivation/
https://coderefinery.github.io/git-intro/browsing/
https://coderefinery.github.io/git-intro/commits/
https://coderefinery.github.io/git-intro/merging/
https://coderefinery.github.io/git-intro/local-workflow/
https://coderefinery.github.io/git-intro/archaeology/
https://coderefinery.github.io/git-intro/sharing/
https://coderefinery.github.io/git-intro/level/

Code easily becomes a disaster without version control
Mistakes happen - Git offers roll-back functionality and easy backup mechanism
One often needs to work on multiple things in parallel - branches solve that problem
Git enables people to collaborate on code or text without stepping on each other’s toes
Reproducibility: You can specify exact versions in publications enabling others to
reproduce your work, and if bugs are found one can find out exactly when it was
introduced

Many learners in a CodeRefinery workshop have developed code for a few years. A majority
have already encountered Git and have used it to some extent, but in most cases they do not
yet feel comfortable with it. They lack a good mental model of how Git operates and are
afraid of making mistakes. Other learners have never used Git before. This lesson teaches
how things are done in Git, which is useful for the newcomers, but also how Git operates
(e.g. what commits and branches really are) and what are some good practices.

Intended learning outcomes

By the end of this lesson, learners should:

realize that version control is very important and Git is a valuable tool to learn and use
understand that Git is configurable and know how to set basic configurations
be able to set up Git repositories and make commits
know how to write good commit messages
have an idea of how the staging area can be used to craft good commits
know how to create branches and switch between branches
have a mental model of how branches work and get used to thinking of branches in a
graphical (tree-structure) way
know how to merge branches and understand what that means in terms of combining
different modifications
realize that conflicts are generally a good thing since they prevent incorrect merges
be able to set up a repository on GitHub and connect it with local repository
push changes to a remote repository
know a few ways to search through a repository and its history

Inspecting history

Key lesson is how to find when something is broken or what commit has broken the code.

It can be useful to emphasize that it can be really valuable to be able to search through the
history of a project efficiently to find when bugs were introduced or when something
changed and why. Also show that git annotate and git show are available on GitHub and
GitLab.

When discussing git annotate and git bisect the “when” is more important than “who”. It
is not to blame anybody but rather to find out whether published results are affected.

Discuss how one would find out this information without version control.

Questions to involve participants:

Have you ever found a bug in your code and wondered whether it has affected published
results?
Have you ever wondered when, and by whom, a particular line of code was introduced?
Have you ever found out that a code behaves differently than it used to but you are not
sure when precisely this changed?

Confusion during git bisect exercise:

Learners may get stuck in the git bisect exercise if they incorrectly assign a commit as bad
or good. To leave the bisect mode and return to the commit before git bisect start was
issued, one can do

and start over if needed.

Live better than reading the website material

It is better to demonstrate the commands live and type-along. Ideally connecting to examples
discussed earlier.

Log your history in a separate window

The screencasting (shell window cheatsheet) hints have been moved to the presenting
manual.

Create a cheatsheet on the board

For in-person workshops, create a “cheatsheet” on the board as you go. After each command
is introduced, write it on the board. After each module, make sure you haven’t forgotten
anything. Re-create and expand in future git lessons. One strategy is:

a common section for basic commands: init , config , clone , help , stash
info commands, can be run anytime: status , log , diff , graph
A section for all the commands that move code from different states: add , commit , etc.
See the visual cheat sheet below.

$ git bisect reset

https://coderefinery.github.io/manuals/instructor-tech-setup/
https://coderefinery.github.io/manuals/instructor-tech-setup/

You can get inspired by http://www.ndpsoftware.com/git-cheatsheet.html to make your
cheat sheet, but if you show this make it clear there are far, far more commands on there
than you need to know right now., and it’s probably too confusing to use after this course.
But, the idea of commands moving from the “working dir”, “staging area”, “commits”, etc is
good.

Example cheat sheet.

We also recommend to draw simple diagrams up on the board (e.g.: working directory -
staging area - repository with commands to move between) and keep them there for students
to refer to.
Draw a graph on the board

Draw the standard commit graphs on the board early on - you know, the thing in all the
diagrams. Keep it updated all the time. After the first few samples, you can basically keep
using the same graph the whole lesson. When you are introducing new commands, explain
and update the graph first, then run git graph , then do the command, then look at git
graph again.

Repeat the following points

Always check git status , git diff , and git graph (our alias) before and after every
command until you get used to things. These give you a clear view into what is going on,
the key to knowing what you are doing. Even after you are used to things… anytime you

file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/cheat-sheet.jpg
file:///home/runner/work/git-intro/git-intro/_build/pyppeteer/_images/cheat-sheet.jpg

do something you do infrequently, it’s good to check.
git graph is a direct representation of what we are drawing on the board and should

constantly be compared to it.
Once you git add something, it’s almost impossible to lose it. This is used all the time,
for example once you commit or even add it is hard to lose. Commit before you merge or
rebase. And so on.

Start from identical environment

You probably have a highly optimized bash and git environment - one that is different from
students. Move .gitconfig and .bashrc out of the way before you start so that your
environment is identical to what students have.

