
 / Python Progression: Moving Beyond the Basics documentation

Python Progression: Moving Beyond the Basics

In this short intermediate-level workshop, we will learn how to write Python with a focus on
reproducibility and re-usability.

We will start in Jupyter Notebooks and later move to running Python scripts from the
command line.

Who is the course for?

Somebody who has written Python scripts or notebooks and wants to improve their code
style and code re-usability.
Somebody who needs to read, process, and plot data for their work or studies.
Persons who already use Python for this but want to learn about libraries to simplify
common tasks and about how to share their workflow in a reproducible way.

⚙ Preparation

We assume everybody follows on their computer with network access
Software install instructions (but we will go through this together)

Episode overview

Warm-up:

Python basics

Day 1 morning:

11:00 - 12:30
Software install instructions
Jupyter Notebooks
Data formats, tidy data, and data cleaning

Day 1 afternoon:

13:30 - 15:00
Plotting with Vega-Altair
Learning how to adapt existing gallery examples

15:30 - 17:00

https://jupyter.org/

From notebooks to scripts
Command-line interfaces (CLI)
Good practices and tools

17:00 - 18:00
Q&A
Working on own scripts/projects

Day 2 morning:

09:00 - 09:45
Version control (motivation)
Reproducible environments and dependencies
Where to start with documentation

09:45 - 10:20
Profiling

10:30 - 11:00
Automated testing

Software install instructions

[this page is adapted from https://aaltoscicomp.github.io/python-for-scicomp/installation/]

Choosing an installation method

For this course we will install an isolated environment with following dependencies:

environment.yml requirements.txt

name: course
channels:
 - conda-forge
dependencies:
 - python <= 3.12
 - jupyterlab
 - altair-all
 - vega_datasets
 - pandas
 - numpy
 - pytest
 - scalene
 - ruff
 - icecream
 - myst-parser
 - sphinx
 - sphinx-rtd-theme
 - sphinx-autoapi
 - sphinx-autobuild

https://aaltoscicomp.github.io/python-for-scicomp/installation/

If you are used to installing packages in Python and know what to do with the above files,
please follow your own preferred installation method.

If you are new to Python or unsure how to create isolated environments in Python from files
above, please follow the instructions below.

💬 There are many choices and we try to suggest a good compromise

There are very many ways to install Python and packages with pros and cons and in
addition there are several operating systems with their own quirks. This can be a huge
challenge for beginners to navigate. It can also difficult for instructors to give
recommendations for something which will work everywhere and which everybody will
like.

Below we will recommend Miniforge since it is free, open source, general, available on all
operating systems, and provides a good basis for reproducible environments. However, it
does not provide a graphical user interface during installation. This means that every time
we want to start a JupyterLab session, we will have to go through the command line.

 Python, conda, anaconda, miniforge, etc?

Unfortunately there are many options and a lot of jargon. Here is a crash course:

Python is a programming language very commonly used in science, it’s the topic of this
course.
Conda is a package manager: it allows distributing and installing packages, and is
designed for complex scientific code.
Mamba is a re-implementation of Conda to be much faster with resolving
dependencies and installing things.
An environment is a self-contained collections of packages which can be installed
separately from others. They are used so each project can install what it needs
without affecting others.
Anaconda is a commercial distribution of Python+Conda+many packages that all work
together. It used to be freely usable for research, but since ~2023-2024 it’s more
limited. Thus, we don’t recommend it (even though it has a nice graphical user
interface).
conda-forge is another channel of distributing packages that is maintained by the
community, and thus can be used by anyone. (Anaconda’s parent company also hosts
conda-forge packages)
Miniforge is a distribution of conda pre-configured for conda-forge. It operates via the
command line.
Miniconda is a distribution of conda pre-configured to use the Anaconda channels.

We will gain a better background and overview in the section Reproducible environments
and dependencies.

Installing Python via Miniforge

Follow the instructions on the miniforge web page. This installs the base, and from here
other packages can be installed.

Unsure what to download and what to do with it?

Installing and activating the software environment

First we will start Python in a way that activates conda/mamba. Then we will install the
software environment from this environment.yml file.

An environment is a self-contained set of extra libraries - different projects can use different
environments to not interfere with each other. This environment will have all of the software
needed for this particular course.

We will call the environment course .

Starting JupyterLab

Every time we want to start a JupyterLab session, we will have to go through the command
line and first activate the course environment.

Windows MacOS Linux

You want to download and run Miniforge3-Windows-x86_64.exe .

Windows Linux / MacOS

Use the “Miniforge Prompt” to start Miniforge. This will set up everything so that conda
and mamba are available. Then type (without the $):

$ mamba env create -n course -f
https://raw.githubusercontent.com/coderefinery/python-
progression/main/software/environment.yml

https://github.com/conda-forge/miniforge
https://raw.githubusercontent.com/coderefinery/python-progression/main/software/environment.yml

Removing the software environment

How to verify your installation

Start JupyterLab (as described above). It will hopefully open up your browser and look like
this:

Windows Linux / MacOS

Start the Miniforge Prompt. Then type (without the $):

$ conda activate course
$ jupyter-lab

Windows Linux / MacOS

In the Miniforge Prompt, type (without the $):

$ conda env list
$ conda env remove --name course
$ conda env list

JupyterLab opened in the browser. Click on the Python 3 tile.

Once you clicked the Python 3 tile it should look like this:

Python 3 notebook started.

Into that blue “cell” please type the following:

import altair
import pandas

print("all good - ready for the course")

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter1.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter1.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter2.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter2.png

Please copy these lines and click on the “play”/”run” icon.

This is how it should look:

Screenshot after successful import.

If this worked, you are all set and can close JupyterLab (no need to save these changes).

This is how it should not look:

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter3.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter3.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter4.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter4.png

Error: required packages could not be found.

Python basics

 Objectives

Knowing what types exist
Knowing the most common data structures (collections): lists, tuples, dictionaries, and
sets
Creating and using functions
Knowing what a library is
Knowing what import does
Being able to “read” an error

Motivation for Python

Free
Huge ecosystem of examples, libraries, and tools
Relatively easy to read and understand
Similar in scope and use cases to R, Julia, and Matlab

Basic types

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter5.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/testing-jupyter5.png

Python is dynamically typed: We do not have to define that an integer is an int , we can
use it this way and Python will infer it.
However, one can use type annotations in Python (see also mypy).
Now you also know that we can add # comments to our code.

Data structures for collections: lists, dictionaries, sets, and tuples

Lists are good when order is important, and it needs to be changed

int
num_measurements = 13

float
some_fraction = 0.25

string
name = "Bruce Wayne"

bool
value_is_missing = False
skip_verification = True

we can print values
print(name)

and we can do arithmetics with ints and floats
print(5 * num_measurements)
print(1.0 - some_fraction)

lists are good when order is important
scores = [13, 5, 2, 3, 4, 3]

first element
print(scores[0])

we can add items to lists
scores.append(4)

lists can be sorted
scores.sort()
print(scores)

dictionaries are useful if you want to look up
elements in a collection by something else than position
experiment = {"location": "Svalbard", "date": "2021-03-23", "num_measurements": 23}

print(experiment["date"])

we can add items to dictionaries
experiment["instrument"] = "a particular brand"
print(experiment)

if "instrument" in experiment:
 print("yes, the dictionary 'experiment' contains the key 'instrument'")
else:
 print("no, it doesn't")

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html
http://mypy-lang.org/
https://docs.python.org/3/library/stdtypes.html#list

Dictionaries are mappings key→value.
Sets are useful for unordered collections where you want to make sure that there are no

repetitions.
There are also tuples that are similar to lists but their items cannot be modified.

You can put:

dictionaries inside lists
lists inside dictionaries
dictionaries inside dictionaries
lists inside lists
tuples inside …
…

Iterating over collections

Often we wish to iterate over collections.

Iterating over a list:

We don’t have to call the variable inside the for-loop “score”. This is up to us. We can do this
instead (but is this more understandable for humans?):

Iterating over a dictionary:

scores = [13, 5, 2, 3, 4, 3]

for score in scores:
 print(score)

example with f-strings
for score in scores:
 print(f"the score is {score}")

scores = [13, 5, 2, 3, 4, 3]

for x in scores:
 print(x)

experiment = {"location": "Svalbard", "date": "2021-03-23", "num_measurements": 23}

for key in experiment:
 print(experiment[key])

another way to iterate
for (key, value) in experiment.items():
 print(key, value)

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple

Functions

Functions are like reusable recipes. They receive ingredients (input arguments), then
inside the function we do/compute something with these arguments, and they return a
result.

Together we can write a function which sums all elements in a list (this is not the most
elegant way to do this but it is easier at this point):

We reuse this function to write a function which computes the mean:

Functions can call other functions. Functions can also get other functions as input
arguments.
Functions can return more than one thing:

def add(a, b):
 result = a + b
 return result

def add_all_elements(sequence):
 """
 This function adds all elements.
 This here is a docstring, a documentation string for a function.
 """
 s = 0.0
 for element in sequence:
 s += element
 return s

measurements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print(add_all_elements(measurements))

def arithmetic_mean(sequence):
 # we are reusing add_all_elements written above
 s = add_all_elements(sequence)
 n = len(sequence)
 return s / n

measurements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

mean = arithmetic_mean(measurements)

print(mean)

Why functions?

Less repetition
Simplify reading and understanding code
Simpler re-use of code
Make it easier for Python to deallocate memory

Reading error messages

Here we introduce a mistake and we together try to make sense of the traceback:

Example error traceback. Can you explain the error?

Libraries

We can look at libraries as collections of functions. We can import the libraries/modules and
then reuse the functions defined inside these libraries.

Try this:

def uppercase_and_lowercase(text):
 u = text.upper()
 l = text.lower()
 return u, l

some_text = "SequenceOfCharacters"
uppercased_text, lowercased_text = uppercase_and_lowercase(some_text)

print(uppercased_text)
print(lowercased_text)

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/error.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/error.png

This means numpy contains a function called std which apparently computes the standard
deviation (check also its documentation).

Often you see this in tutorials (the module is imported and renamed to a shortcut):

It is possible to create own modules to collect own functions for reuse.
Great resources to learn more

Real Python Tutorials (great for beginners)
The Python Tutorial (great for beginners)
The Hitchhiker’s Guide to Python! (intermediate level)
Effective Python (once you know the basics and want to write better code)

Exercises

✍️ Exercise: create a function that computes the standard deviation

Arithmetic mean:

\[\bar{x} = \frac{1}{N} \sum_{i=1}^N x_i\]

Standard deviation:

\[\sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2 }\]

In other words the computation is similar but we need to sum over squares of
differences and at the end take a square root.
Take this as a starting point:

import numpy

measurements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

result = numpy.std(measurements)

print(result)

import numpy as np

result = np.std([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

https://numpy.org/doc/stable/reference/generated/numpy.std.html
https://realpython.com/
https://docs.python.org/3/tutorial/index.html
https://docs.python-guide.org/
https://effectivepython.com/

If this is the input list:

Then the result would be: 2.872…

✔︎Solution 1 (longer but hopefully easier to understand)

✔︎Solution 2 (more compact)

we have written this one together previously
def arithmetic_mean(sequence):
 s = 0.0
 for element in sequence:
 s += element
 n = len(sequence)
 return s / n

def standard_deviation(sequence):
 # here we need to do some work:
 # mean = ?
 # s = ?
 n = len(sequence)
 return (s / n) ** 0.5

measurements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

we have written this one together previously
def arithmetic_mean(sequence):
 s = 0.0
 for element in sequence:
 s += element
 n = len(sequence)
 return s / n

notice how this function reuses the other
def standard_deviation(sequence):
 mean = arithmetic_mean(sequence)
 s = 0.0
 for element in sequence:
 s += (element - mean) ** 2
 n = len(sequence)
 return (s / n) ** 0.5

✍️ Exercise: working with a dictionary

We have this dictionary as a starting point:

Add the grades of few more (fictious) persons to this dictionary.
Print the entire dictionary.
What happens when you add a name which already exists (with a different grade)?
Print the grade for one particular person only.
What happens when you try to print the result for a person that wasn’t there?
Try also these:

✔︎Solution

We can add more people like this:

Print the entire dictionary with:

We get:

def arithmetic_mean(sequence):
 return sum(sequence) / len(sequence)

def standard_deviation(sequence):
 mean = arithmetic_mean(sequence)
 s = sum([(x - mean) ** 2 for x in sequence])
 n = len(sequence)
 return (s / n) ** 0.5

grades = {"Alice": 80, "Bob": 95}

print(grades.keys())
print(grades.values())
print(grades.items())

grades["Craig"] = 56
grades["Dave"] = 28
grades["Eve"] = 75

print(grades)

Adding an entry which already exists updates the entry (please try it).

Printing the result for one particular person:

Printing the result for a person which does not exists, gives a KeyError .

The outputs of these three:

… are either the only the keys or only the values, or in the case of items() , key-value
pairs (tuples):

The exercises below use if-statements.

✍️ Optional exercise/ homework: removing duplicates

This list contains duplicates:

Write a function which removes duplicates from the list and sorts the list. In this case
it would produce:

{'Alice': 80, 'Bob': 95, 'Craig': 56, 'Dave': 28, 'Eve': 75}

print(grades["Eve"])

print(grades.keys())
print(grades.values())
print(grades.items())

dict_keys(['Alice', 'Bob', 'Craig', 'Dave', 'Eve'])
dict_values([80, 95, 56, 28, 75])
dict_items([('Alice', 80), ('Bob', 95), ('Craig', 56), ('Dave', 28), ('Eve', 75)])

measurements = [2, 2, 1, 17, 3, 3, 2, 1, 13, 14, 17, 14, 4]

[1, 2, 3, 4, 13, 14, 17]

https://docs.python.org/3/tutorial/controlflow.html#if-statements

✔︎Solution 1 (longer but hopefully easier to understand)

The function sorted sorts a sequence but it creates a new sequence. This is useful if you
need a sorted result without changing the original sequence.

We could have achieved the same result with list.sort() .

✔︎Solution 2 (more compact)

Converting to set removes duplicates. Then we convert back to list:

✍️ Optional exercise/ homework: counting how often an item appears

Back to our list with duplicates:

Your goal is to write a function which will return a dictionary mapping each number to
how often it appears. In this case it would produce:

✔︎Solution 1 (longer but hopefully easier to understand)

def remove_duplicates_and_sort(sequence):
 new_sequence = []
 for element in sequence:
 if element not in new_sequence:
 new_sequence.append(element)
 return sorted(new_sequence)

def remove_duplicates_and_sort(sequence):
 new_sequence = list(set(sequence))
 return sorted(new_sequence)

measurements = [2, 2, 1, 17, 3, 3, 2, 1, 13, 14, 17, 14, 4]

{2: 3, 1: 2, 17: 2, 3: 2, 13: 1, 14: 2, 4: 1}

https://docs.python.org/3/library/stdtypes.html#list.sort

✔︎Solution 2 (more compact)

The point of this solution is to show that for such common operations, ready-made
functions and objects already exist and is is worth to check out the documentation about
the collections module.

Jupyter Notebooks

 Objectives

Know what it is
Create a new notebook and save it
Open existing notebooks from the web
Be able to create text/markdown cells, code cells, images, and equations
Know when to use a Jupyter Notebook for a Python project and when perhaps not to
We will build up this notebook (spoiler alert!)

[this lesson is adapted from https://coderefinery.github.io/jupyter/motivation/]

Motivation for Jupyter Notebooks

def how_often(sequence):
 counts = {}
 for element in sequence:
 if element in counts:
 counts[element] += 1
 else:
 counts[element] = 1
 return counts

from collections import Counter, defaultdict

def how_often_alternative1(sequence):
 return dict(Counter(sequence))

def how_often_alternative2(sequence):
 counts = defaultdict(int)
 for element in sequence:
 counts[element] += 1
 return dict(counts)

https://docs.python.org/3/library/collections.html
https://nbviewer.org/github/coderefinery/python-progression/blob/main/notebooks/first-notebook.ipynb
https://coderefinery.github.io/jupyter/motivation/

One of the first notebooks: Galileo’s drawings of Jupiter and its Medicean Stars from Sidereus
Nuncius. Image courtesy of the History of Science Collections, University of Oklahoma Libraries
(CC-BY).

Code, text, equations, figures, plots, etc. are interleaved, creating a computational
narrative.
“an environment in which users execute code, see what happens, modify and repeat in a kind of
iterative conversation between researcher and data”
The name “Jupyter” derives from Julia+Python+R, but today Jupyter kernels exist for
dozens of programming languages.
Gallery of interesting Jupyter Notebooks.

Our first notebook

✍️ Exercise: Create a notebook (15 min)

Open a new notebook (if you are unsure how, have a look at Software install
instructions)
Rename the notebook
Create a markdown cell with a section title, a short text, an image, and an equation

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/medicean-stars.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/medicean-stars.png
https://www.nature.com/articles/d41586-018-07196-1
https://www.nature.com/articles/d41586-018-07196-1
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki

Most important shortcut: Shift + Enter, to run current cell and create a new one
below.
Create a code cell where you define the arithmetic_mean function:

In a different cell, call the function:

In a new cell, let us try to plot a layered histogram:

Title of my notebook

Some text.

![Photo of Galilei's manuscript]
(https://upload.wikimedia.org/wikipedia/commons/b/b3/Galileo_Galilei_%281564_-
1642%29-_Serenissimo_Principe_-
_manuscript_with_observations_of_Jupiter_and_four_of_its_moons%2C_1610.png)

$E = mc^2$

def arithmetic_mean(sequence):
 s = 0.0
 for element in sequence:
 s += element
 n = len(sequence)
 return s / n

arithmetic_mean([1, 2, 3, 4, 5])

this example is from https://altair-
viz.github.io/gallery/layered_histogram.html

import pandas as pd
import altair as alt
import numpy as np
np.random.seed(42)

Generating Data
source = pd.DataFrame({
 'Trial A': np.random.normal(0, 0.8, 1000),
 'Trial B': np.random.normal(-2, 1, 1000),
 'Trial C': np.random.normal(3, 2, 1000)
})

alt.Chart(source).transform_fold(
 ['Trial A', 'Trial B', 'Trial C'],
 as_=['Experiment', 'Measurement']
).mark_bar(
 opacity=0.3,
 binSpacing=0
).encode(
 alt.X('Measurement:Q').bin(maxbins=100),
 alt.Y('count()').stack(None),
 alt.Color('Experiment:N')
)

Run all cells.
Save the notebook.
Observe that a “#” character has a different meaning in a code cell (code comment)
than in a markdown cell (heading).
Your notebook should look like this one.

Use cases for notebooks

Really good for step-by-step recipes (e.g. read data, filter data, do some statistics, plot the
results)
Experimenting with new ideas, testing new libraries/databases
As an interactive development environment for code, data analysis, and visualization
Keeping track of interactive sessions, like a digital lab notebook
Supporting information with published articles

Situations where notebooks are less of a good fit:

Code takes long to run
It is so long and complex that I need to test it
When I need a command-line interface
When I want to process many similar files and each takes few minutes

Good practices

Run all cells or even Restart Kernel and Run All Cells before sharing/saving to verify that the
results you see on your computer were not due to cells being run out of order.

This can be demonstrated with the following example:

We can first split this code into two cells and then re-define numbers further down in the
notebook. If we run the cells out of order, the result will be different.

Data formats, tidy data, and data cleaning

 Objectives

Knowing about different storage formats
Knowing about the tidy data format
Be able to reformat tabular data into the tidy data format

numbers = [1, 2, 3, 4, 5]
arithmetic_mean(numbers)

https://nbviewer.org/github/coderefinery/python-progression/blob/main/notebooks/first-notebook.ipynb

Data is not always in nicely formatted “plain” text files. But sometimes the data is in a
spreadsheet or in less nicely formatted text files. In this episode we will discuss strategies for
how to work with these.

Importing data from spreadsheets

We can create a spreadsheet with the following content (only columns A and B; the actual
content does not have to be exactly the same):

Example spreadsheet with a side note.

Copy this also to the second sheet and for demonstration purpose add some side-notes to
the second sheet and also color one or two cells (some people like to give some meaning to
cells using color).

Save the spreadsheet as experiment.xls .

Now we will together try to read and inspect both sheets in the Jupyter Notebook:

💬 Discussion

We can import data from spreadsheets (more documentation)!
“Side notes” in spreadsheets can be annoying in this context.
Also encoding data in cell colors is a problem now. We will avoid those in future.

import pandas as pd

data = pd.read_excel('experiment.xls', sheet_name="Sheet1")
data

data = pd.read_excel('experiment.xls', sheet_name="Sheet2")
data

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html

Tidy data

Example spreadsheet (this is a phantasy dataset, apologies to biology students/researchers - this is
not my domain).

💬What is the problem with storing data like this?

Format: Limited interoperability with other programs
Error prone (see e.g. this famous example
Difficult to parse (“understand”) by scripts: difficult to automate
Not in tidy format: difficult to extend/modify

How should we arrange the data?

Attempt 1: Not great since we need to somehow divide at the comma. How should we deal with
multiple sightings?

https://www.theguardian.com/politics/2013/apr/18/uncovered-error-george-osborne-austerity
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-compact.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-compact.png

Attempt 2: Adding observation sites will force us to add columns.

Attempt 3: Adding species will force us to add columns.

Tidy data format: Columns are variables, rows are observations/measurements. Easy to add new
species and sites.

 Tidy data format

Hadley Wickham: Tidy Data
Columns are variables
Rows are observations/measurements
“Long form”
Order does not matter
Easy to extend with more species and more sites without modifying the code
Structure for storing data - this does not mean that this is ideal for tables in
presentations or publications
It is possible to convert between wide form and long form and back (e.g. using
pandas.melt or pandas.pivot), see this example notebook

Use a standard format

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-wide.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-wide.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-transposed.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-transposed.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-tidy.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/svalbard-tidy.png
https://vita.had.co.nz/papers/tidy-data.html
https://nbviewer.org/github/coderefinery/python-progression/blob/main/notebooks/tidy-data.ipynb

Use a format that is standard in your community, don’t invent your own
CSV is often a good choice since most visualization tools can read CSV data

There are many more formats (adapted after Python for Scientific Computing):

Name:
Human
readable:

Space
efficiency:

Arbitrary
data:

Tidy
data:

Array
data:

Long term
storage/sharing:

CSV ✅ ❌ ❌ ✅ 🟨 ✅

Feather ❌ ✅ ❌ ✅ ❌ ❌

Parquet ❌ ✅ 🟨 ✅ 🟨 ✅

NPY ❌ 🟨 ❌ ❌ ✅ ❌

HDF5 ❌ ✅ ❌ ❌ ✅ ✅

NetCDF ❌ ✅ ❌ ❌ ✅ ✅

JSON ✅ ❌ 🟨 ❌ ❌ ✅

GeoJSON ✅ ❌ 🟨 ❌ ❌ ✅

Excel ❌ ❌ ❌ 🟨 ❌ 🟨

Graph
formats 🟨 🟨 ❌ ❌ ❌ ✅

SQL ❌ 🟨 ❌ ❌ ❌ ❌

 Note

✅ : Good
🟨 : Ok / depends on a case
❌ : Bad

Data cleaning

Often we want to visualize data sets with inconsistent or missing entries:

Species,Observation site,Number of sightings
arctic fox,A,3
arctic fox,B,1
walrus,B,1
walrus,C,1
reindeer,B,10
reindeer,C,1
polar bear,A,1
polar bear,C,1
seal,A,2
seal,B,1
seal,C,2

https://aaltoscicomp.github.io/python-for-scicomp/work-with-data/
https://en.wikipedia.org/wiki/Comma-separated_values
https://arrow.apache.org/docs/python/feather.html
https://parquet.apache.org/
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://www.unidata.ucar.edu/software/netcdf/
https://en.wikipedia.org/wiki/JSON
https://geojson.org/
https://en.wikipedia.org/wiki/SQL

Data cleaning is a bit outside the scope of this course (although we have done some of this in
the pandas episode) but still good to know:

There are tools to clean and merge inconsistent data sets (e.g. OpenRefine, see also this
Data Carpentry lesson)
This does not have to be done manually

Plotting with Vega-Altair

 Objectives

Be able to create simple plots with Vega-Altair and tweak them
Know how to look for help
Reading data with Pandas from disk or a web resource
Know how to tweak example plots from a gallery for your own purpose
We will build up this notebook (spoiler alert!)

Repeatability/reproducibility

From Claus O. Wilke: “Fundamentals of Data Visualization”:

One thing I have learned over the years is that automation is your friend. I think figures should
be autogenerated as part of the data analysis pipeline (which should also be automated), and
they should come out of the pipeline ready to be sent to the printer, no manual post-processing
needed.

Try to minimize manual post-processing. This could bite you when you need to regenerate
50 figures one day before submission deadline or regenerate a set of figures after the
person who created them left the group.
There is not the one perfect language and not the one perfect library for everything.
Within Python, many libraries exist:

Vega-Altair: declarative visualization, statistics built in
Matplotlib: probably the most standard and most widely used
Seaborn: high-level interface to Matplotlib, statistical functions built in
Plotly: interactive graphs
Bokeh: also here good for interactivity
plotnine: implementation of a grammar of graphics in Python, it is based on ggplot2
ggplot: R users will be more at home
PyNGL: used in the weather forecast community

Date,Organization,Number of participants
2020-09-27,UiT,20
Oct 10 2020,UiT Norges arktiske universitet,15
"Nov. 11, 2020",UiT The Arctic University of Norway,40
2020-12-12,UiT The Arctic University of Norway,-

https://openrefine.org/
https://datacarpentry.org/OpenRefine-ecology-lesson/
https://datacarpentry.org/OpenRefine-ecology-lesson/
https://altair-viz.github.io/
https://nbviewer.org/github/coderefinery/python-progression/blob/main/notebooks/plotting.ipynb
https://clauswilke.com/dataviz/
https://altair-viz.github.io/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html
https://plotly.com/python/
https://demo.bokeh.org/
https://plotnine.readthedocs.io/
https://ggplot2.tidyverse.org/
https://yhat.github.io/ggpy/
https://www.pyngl.ucar.edu/Examples/gallery.shtml

K3D: Jupyter Notebook extension for 3D visualization
Mayavi: 3D scientific data visualization and plotting in Python
…

Two main families of libraries: procedural (e.g. Matplotlib) and declarative (e.g. Vega-
Altair).

Why are we starting with Vega-Altair?

Concise and powerful
“Simple, friendly and consistent API” allows us to focus on the data visualization part and
get started without too much Python knowledge
The way it combines visual channels with data columns can feel intuitive
Interfaces very nicely with Pandas
Easy to change figures
Good documentation
Open source
Makes it easy to save figures in a number of formats (svg, png, html)
Easy to save interactive visualizations to be used in websites

Example data: Weather data from two Norwegian cities

We will experiment with some example weather data obtained from Norsk
KlimaServiceSenter, Meteorologisk institutt (MET) (CC BY 4.0). The data is in CSV format
(comma-separated values) and contains daily and monthly weather data for two cities in
Norway: Oslo and Tromsø. You can browse the data here in the lesson repository.

We will use the Pandas library to read the data into a dataframe.

Pandas can read from and write to a large set of formats (overview of input/output functions
and formats). We will load a CSV file directly from the web. Instead of using a web URL we
could use a local file name instead.

Pandas dataframes are a great data structure for tabular data and tabular data turns out to
be a great input format for data visualization libraries. Vega-Altair understands Pandas
dataframes and can plot them directly.

Reading data into a dataframe

We can try this together in a notebook: Using Pandas we can merge, join, concatenate, and
compare dataframes, see https://pandas.pydata.org/pandas-
docs/stable/user_guide/merging.html.

Let us try to concatenate two dataframes: one for Tromsø weather data (we will now load
monthly values) and one for Oslo:

https://k3d-jupyter.org/gallery/index.html
https://docs.enthought.com/mayavi/mayavi/
https://altair-viz.github.io/
https://pandas.pydata.org/
https://seklima.met.no/observations/
https://seklima.met.no/observations/
https://github.com/coderefinery/python-progression/tree/main/data
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Before plotting the data, there is a problem which we may not see yet: Dates are not in a
standard date format (YYYY-MM-DD). We can fix this:

With Pandas it is possible to do a lot more (adjusting missing values, fixing inconsistencies,
changing format).
What is in a dataframe?

The name pandas is derived from the term “panel data”.

column

DataFrame

row

A pandas dataframe object is composed of rows and columns.

Let us explore these together in the notebook (run these in separate cells):

import pandas as pd

url_prefix = "https://raw.githubusercontent.com/coderefinery/python-
progression/main/data/"

data_tromso = pd.read_csv(url_prefix + "tromso-monthly.csv")
data_oslo = pd.read_csv(url_prefix + "oslo-monthly.csv")

data_monthly = pd.concat([data_tromso, data_oslo], axis=0)

let us print the combined result
data_monthly

replace mm.yyyy to date format
data_monthly["date"] = pd.to_datetime(list(data_monthly["date"]), format="%m.%Y")

Where to learn more about pandas

Pandas is extremely powerful and there is a lot that can be done and there are great
resources to explore more:

Getting started guide (including tutorials and a 10 minute flash intro)
10 minutes to pandas tutorial
Pandas documentation
Cheatsheet
Cookbook
Data Carpentry lesson “Data Analysis and Visualization in Python for Ecologists” (useful
not only for ecologists)

Plotting the data

Now let’s plot the data. We will start with a plot that is not optimal and then we will explore
and improve a bit as we go:

print an overview of the dataset
data_monthly

print the first 5 rows
data_monthly.head()

print the last 5 rows
data_monthly.tail()

print all column titles - no parentheses here
data_monthly.columns

show which data types were detected
data_monthly.dtypes

print table dimensions - no parentheses here
data_monthly.shape

print one column
data_monthly["max temperature"]

get some statistics
data_monthly["max temperature"].describe()

what was the maximum temperature?
data_monthly["max temperature"].max()

print all rows where max temperature was above 20
data_monthly[data_monthly["max temperature"] > 20.0]

https://pandas.pydata.org/getting_started.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
https://datacarpentry.org/python-ecology-lesson/

October December February April June August October
date

0

50

100

150

200

250

300

350

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipitation for the cities Oslo and Tromsø over the course of a year.

💬 Let us pause and explain the code

alt is a short-hand for altair which we imported on top of the notebook
Chart() is a function defined inside altair which takes the data as argument
mark_bar() is a function that produces bar charts
encode() is a function which encodes data columns to visual channels

Observe how we connect (encode) visual channels to data columns:

x-coordinate with “date”
y-coordinate with “precipitation”
color with “name” (name of weather station; city)

We can improve the plot by giving Vega-Altair a bit more information that the x-axis is
temporal (T) and that we would like to see the year and month (yearmonth):

import altair as alt

alt.Chart(data_monthly).mark_bar().encode(
 x="date",
 y="precipitation",
 color="name",
)

alt.Chart(data_monthly).mark_bar().encode(
 x="yearmonth(date):T",
 y="precipitation",
 color="name",
)

Apart from T (temporal), there are other encoding data types:

Q (quantitative)
O (ordinal)
N (nominal)
T (temporal)
G (geojson)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

0

50

100

150

200

250

300

350

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipitation for the cities Oslo and Tromsø over the course of a year.

Let us improve the plot with another one-line change:

alt.Chart(data_monthly).mark_bar().encode(
 x="yearmonth(date):T",
 y="precipitation",
 color="name",
 column="name",
)

https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types

name

0

50

100

150

200

250
pr

ec
ip

ita
tio

n

Oslo - Blindern Tromso - Langnes

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oslo - Blindern
Tromso - Langnes

name

Monthly precipitation for the cities Oslo and Tromsø over the course of a year with with both cities
plotted side by side.

With another one-line change we can make the bar chart stacked:

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

0

50

100

150

200

250

pr
ec

ip
ita

tio
n

Oslo - Blindern
Tromso - Langnes

name

Monthly precipitation for the cities Oslo and Tromsø over the course of a year plotted as stacked
bar chart.

This is not publication-quality yet but a really good start!

alt.Chart(data_monthly).mark_bar().encode(
 x="yearmonth(date):T",
 y="precipitation",
 color="name",
 xOffset="name",
)

Let us try one more example where we can nicely see how Vega-Altair is able to map visual
channels to data columns:

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

−20

−15

−10

−5

0

5

10

15

20

25

30

35

m
ax

 te
m

pe
ra

tu
re

, m
in

 te
m

pe
ra

tu
re

Oslo - Blindern
Tromso - Langnes

name

Monthly temperature ranges for two cities in Norway.

💬What other marks and other visual channels exist?

Overview of available marks
Overview of available visual channels
Gallery of examples

Exercise: Using visual channels to re-arrange plots

✍️ Exercise Plotting-1: Using visual channels to re-arrange plots

1. Try to reproduce the above plots if they are not already in your notebook.
2. Above we have plotted the monthly precipitation for two cities side by side using a

stacked plot. Try to arrive at the following plot where months are along the y-axis and
the precipitation amount is along the x-axis:

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(
 x="yearmonth(date):T",
 y="max temperature",
 y2="min temperature",
 color="name",
)

https://altair-viz.github.io/user_guide/marks/index.html
https://altair-viz.github.io/user_guide/encodings/channels.html
https://altair-viz.github.io/gallery/index.html

0 50 100 150 200 250
precipitation

Oct 2022

Nov 2022

Dec 2022

Jan 2023

Feb 2023

Mar 2023

Apr 2023

May 2023

Jun 2023

Jul 2023

Aug 2023

Sep 2023

Oct 2023

Nov 2023

da
te

 (y
ea

r-
m

on
th

)

Oslo - Blindern
Tromso - Langnes

name

3. Ask the Internet or AI how to change the axis title from “precipitation” to
“Precipitation (mm)”.

4. Modify the temperature range plot to show the temperature ranges for the two cities
side by side like this:

name

−20

−15

−10

−5

0

5

10

15

20

25

30

35

m
ax

 te
m

pe
ra

tu
re

, m
in

 te
m

pe
ra

tu
re

Oslo - Blindern Tromso - Langnes

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oct 2022 Feb 2023 Jun 2023 Oct 2023
date (year-month)

Oslo - Blindern
Tromso - Langnes

name

✔︎Solution

1. Copy-paste code blocks from above.
2. Basically we switched x and y:

3. This can be done with the following modification:

alt.Chart(data_monthly).mark_bar().encode(
 y="yearmonth(date):T",
 x="precipitation",
 color="name",
 yOffset="name",
)

4. We added one line:

More fun with visual channels

Now we will try to plot the daily data and look at snow depths. We first read and
concatenate two datasets:

We adjust the data a bit:

Now we can plot the snow depths for the months December to May for the two cities:

alt.Chart(data_monthly).mark_bar().encode(
 y="yearmonth(date):T",
 x=alt.X("precipitation").title("Precipitation (mm)"),
 color="name",
 yOffset="name",
)

alt.Chart(data_monthly).mark_area(opacity=0.5).encode(
 x="yearmonth(date):T",
 y="max temperature",
 y2="min temperature",
 color="name",
 column="name",
)

url_prefix = "https://raw.githubusercontent.com/coderefinery/python-
progression/main/data/"

data_tromso = pd.read_csv(url_prefix + "tromso-daily.csv")
data_oslo = pd.read_csv(url_prefix + "oslo-daily.csv")

data_daily = pd.concat([data_tromso, data_oslo], axis=0)

replace dd.mm.yyyy to date format
data_daily["date"] = pd.to_datetime(list(data_daily["date"]), format="%d.%m.%Y")

we are here only interested in the range december to may
data_daily = data_daily[
 (data_daily["date"] > "2022-12-01") & (data_daily["date"] < "2023-05-01")
]

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway.

What happens if we try to color the plot by the “max temperature” values?

The result looks neat:

alt.Chart(data_daily).mark_bar().encode(
 x="date",
 y="snow depth",
 column="name",
)

alt.Chart(data_daily).mark_bar().encode(
 x="date",
 y="snow depth",
 color="max temperature",
 column="name",
)

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored
by daily max temperature.

We can change the color scheme (available color schemes):

With the following result:

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

December 2023 February March April May
date

December 2023 February March April May
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored
by daily max temperature. Warmer days are often followed by reduced snow depth.

alt.Chart(data_daily).mark_bar().encode(
 x="date",
 y="snow depth",
 color=alt.Color("max temperature").scale(scheme="plasma"),
 column="name",
)

https://vega.github.io/vega/docs/schemes/

Let’s try one more change to show that we can experiment with different plot types by
changing mark_bar() to something else, in this case mark_circle() :

name

0

20

40

60

80

100

120

sn
ow

 d
ep

th

Oslo - Blindern Tromso - Langnes

2023 February March April
date

2023 February March April
date

−5

0

5

10

15

max temperature

Snow depth (in cm) for the months December 2022 to May 2023 for two cities in Norway. Colored
by daily max temperature. Warmer days are often followed by reduced snow depth.
Themes

In Vega-Altair you can change the theme and select from a long list of themes. On top of your
notebook try to add:

Then re-run all cells. Later you can try some other themes such as:

fivethirtyeight

latimes

urbaninstitute

You can even define your own themes!

Exercise: Anscombe’s quartet

alt.Chart(data_daily).mark_circle().encode(
 x="date",
 y="snow depth",
 color=alt.Color("max temperature").scale(scheme="plasma"),
 column="name",
)

alt.themes.enable('dark')

https://altair-viz.github.io/
https://github.com/vega/vega-themes

Save the following data as example.csv (you can do this directly from JupyterLab; this data
is the Anscombe’s quartet):

✍️ Exercise Plotting-2: Read and plot a CSV file

Save the above CSV file to disk as example.csv in the same folder where you run
JupyterLab. We recommend to create the file in the JupyterLab interface.
Plot the data using mark_point .
Your goal is to arrive at four plots for the four data sets, all side by side.
If you have time, try to customize the plot.

dataset,x,y
I,10.0,8.04
I,8.0,6.95
I,13.0,7.58
I,9.0,8.81
I,11.0,8.33
I,14.0,9.96
I,6.0,7.24
I,4.0,4.26
I,12.0,10.84
I,7.0,4.82
I,5.0,5.68
II,10.0,9.14
II,8.0,8.14
II,13.0,8.74
II,9.0,8.77
II,11.0,9.26
II,14.0,8.1
II,6.0,6.13
II,4.0,3.1
II,12.0,9.13
II,7.0,7.26
II,5.0,4.74
III,10.0,7.46
III,8.0,6.77
III,13.0,12.74
III,9.0,7.11
III,11.0,7.81
III,14.0,8.84
III,6.0,6.08
III,4.0,5.39
III,12.0,8.15
III,7.0,6.42
III,5.0,5.73
IV,8.0,6.58
IV,8.0,5.76
IV,8.0,7.71
IV,8.0,8.84
IV,8.0,8.47
IV,8.0,7.04
IV,8.0,5.25
IV,19.0,12.5
IV,8.0,5.56
IV,8.0,7.91
IV,8.0,6.89

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

✔︎Solution

Here is a more advanced example where the four plots are arranged in a 2 x 2 grid:

 Keypoints

Browse a number of example galleries to help you choose the library that fits best
your work/style.
Minimize manual post-processing and try to script all steps.
CSV (comma-separated values) files are often a good format to store the data that we
wish to plot.
Read the data into a Pandas dataframe and then plot it with Vega-Altair where you
connect data columns to visual channels.

we don't need to import again but just in case you started here
import pandas as pd

data = pd.read_csv("example.csv")

alt.Chart(data).mark_point().encode(
 x="x",
 y="y",
 color="dataset",
 column="dataset",
)

def create_chart(data, number):
 chart = (
 alt.Chart(data)
 .transform_filter(alt.datum.dataset == number)
 .mark_point()
 .encode(x="x", y="y")
)
 return chart

chart1 = create_chart(data_example, "I")
chart2 = create_chart(data_example, "II")
chart3 = create_chart(data_example, "III")
chart4 = create_chart(data_example, "IV")

chart = alt.vconcat(
 alt.hconcat(chart1, chart2),
 alt.hconcat(chart3, chart4),
)

chart.display()

https://altair-viz.github.io/user_guide/encodings/channels.html

Learning how to adapt existing gallery examples

In this exercise we can try to adapt existing scripts to either tweak how the plot looks or to
modify the input data. This is very close to real life: there are so many options and
possibilities and it is almost impossible to remember everything so this strategy is useful to
practice:

Select an example that is close to what you have in mind
Being able to adapt it to your needs
Being able to search for help

✍️ Exercise: Adapting a gallery example

This is a great exercise which is very close to real life.

Browse the Vega-Altair example gallery.
Select one example that is close to your current/recent visualization project or simply
interests you.
First try to reproduce this example, as-is, in the Jupyter Notebook.
If you get the error “ModuleNotFoundError: No module named ‘vega_datasets’”, then
try one of these examples: (they do not need the “vega_datasets” module)

Slider cutoff (below you can find a walk-through for this example)
Multi-Line tooltip
Heatmap
Layered histogram

Then try to print out the data that is used in this example just before the call of the
plotting function to learn about its structure. Consider writing the data to file before
changing it.
Then try to modify the data a bit.
If you have time, try to feed it different, simplified data. This will be key for adapting
the examples to your projects.

✔︎Example walk-through for the slider cutoff example

In this walk-through I imagine browsing: https://altair-viz.github.io/gallery/index.html

Then this example caught my eye: https://altair-viz.github.io/gallery/slider_cutoff.html

I then copy-paste the example code into a notebook and try to run it and I get the
same result.

Next, there is a lot of code that I don’t (need to) understand yet but my eyes are trying
to find alt.Chart which tells me that the data must be the “df” in alt.Chart(df) :

https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html
https://altair-viz.github.io/gallery/multiline_tooltip_standard.html
https://altair-viz.github.io/gallery/simple_heatmap.html
https://altair-viz.github.io/gallery/layered_histogram.html
https://altair-viz.github.io/gallery/index.html
https://altair-viz.github.io/gallery/slider_cutoff.html

My next step will be to print out the data df just before the call to alt.Chart :

The print reveals that df is a dataframe which contains x and y values:

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({
 'xval': range(100),
 'yval': rand.randn(100).cumsum()
})

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

alt.Chart(df).mark_point().encode(
 x='xval',
 y='yval',
 color=alt.condition(
 alt.datum.xval < cutoff,
 alt.value('red'), alt.value('blue')
)
).add_params(
 cutoff
)

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({
 'xval': range(100),
 'yval': rand.randn(100).cumsum()
})

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

print(df)

alt.Chart(df).mark_point().encode(
 x='xval',
 y='yval',
 color=alt.condition(
 alt.datum.xval < cutoff,
 alt.value('red'), alt.value('blue')
)
).add_params(
 cutoff
)

The next thing that often helps me is to save the data to a comma-separated values
(CSV) file:

I then open the file in an editor and see that it contains 100 rows:

Saving the data to file often helps me to see the structure of the data and now I am in
a position to replace this with my own data. I create a file called “mydata.csv” and
there I use the maximum temperatures for months 1-10 from the Tromso monthly data
which we used further up:

 xval yval
0 0 0.496714
1 1 0.358450
2 2 1.006138
3 3 2.529168
4 4 2.295015
..
95 95 -10.712354
96 96 -10.416233
97 97 -10.155178
98 98 -10.150065
99 99 -10.384652

[100 rows x 2 columns]

import pandas as pd

df.to_csv("data.csv", index=False)

xval,yval
0,0.4967141530112327
1,0.358449851840048
2,1.0061383899407406
3,2.5291682463487657
4,2.2950148716254297
5,2.060877914676249
6,3.6400907301836405
7,4.407525459336549
8,3.938051073401597
9,4.4806111169875615
...

In the notebook I then verify that the reading of the data works:

Now I can replace the example with my own data (note how I now can comment out
some code that I don’t need any longer):

Seems to work! I then make few more adjustments (I want the slider to work on the y-
axis and have a more reasonable default):

xval,yval
01,7.7
02,6.6
03,4.5
04,9.8
05,17.7
06,25.4
07,26.7
08,25.1
09,19.3
10,9.8

mydata = pd.read_csv("mydata.csv")

mydata

import altair as alt
import pandas as pd
import numpy as np

rand = np.random.RandomState(42)

df = pd.DataFrame({
'xval': range(100),
'yval': rand.randn(100).cumsum()
})

slider = alt.binding_range(min=0, max=100, step=1)
cutoff = alt.param(bind=slider, value=50)

print(df)
df = pd.read_csv("mydata.csv")

alt.Chart(df).mark_point().encode(
 x='xval',
 y='yval',
 color=alt.condition(
 alt.datum.xval < cutoff,
 alt.value('red'), alt.value('blue')
)
).add_params(
 cutoff
)

My next steps would then be to change axis titles, display the month names, add a
legend, and refine from here.

From notebooks to scripts

 Objectives

Understand when notebooks are not useful anymore and when to start using scripts
Be able to use nbconvert or other tools to convert a notebook to a script
Run a script from the command line
Reflect on the advantages of scripts over notebooks

Why make the change?

Though we have seen that notebooks are very practical and useful for many tasks, such as
testing out analyses, sharing results, teaching, and more, there are some cases where it is
better to use scripts.

We will all at one point find out that notebooks are not the best tool for every use. Some
cases where a script would do a better job are:

You want to run an analysis at a specific time every day, with a scheduler of some kind
Your notebook has exceeded your laptops capabilities and you want to migrate your
workflow to a supercomputer with a scheduler such as SLURM
You run a complex process in the notebook needs to be optimized and profiled with the
relevant tools (We will look at this more later in this course)

Although scripts are not the perfect tool either, they are still a powerful tool and allow for
more flexibility and control.

import altair as alt
import pandas as pd

slider = alt.binding_range(min=0, max=30, step=1)
cutoff = alt.param(bind=slider, value=15)

df = pd.read_csv("mydata.csv")

alt.Chart(df).mark_point().encode(
 x='xval',
 y='yval',
 color=alt.condition(
 alt.datum.yval < cutoff,
 alt.value('red'), alt.value('blue')
)
).add_params(
 cutoff
)

Converting a notebook to a script

There are several ways to make a notebook into a command line script. One such way is
nbconvert , which is a tool that comes with Jupyter. Check the JupyterLab documentation
<https://jupyterlab.readthedocs.io/en/stable/user/export.html> for more information.

You can get a command line in jupyter lab by (File → New Launcher → Terminal - if you go
through New Launcher, your command line will be in the directory you are currently
browsing), you can convert files in the terminal by running:

If you are struggling with the command line, you can also convert a notebook to a script by
going to the notebook and clicking on File → Save and Export Notebook As → Executable
Script . This will save the notebook in your machine, so you will have to copy it to the
relevant directory (if you want it on a remote machine such as a supercomputer).

Press in the top menu File → Save and Export Notebook As → Executable Script to download the
notebook as a script.

✍️ Exercise Scripts-1: Convert a notebook to a script (20 mins)

 jupyter nbconvert --to script your_notebook_name.ipynb

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/exporting-notebooks.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/exporting-notebooks.png

1. Download the following notebook by right-clicking on this link and selecting “Save
Link As…” to save the file to your local machine.

2. Convert the notebook to a script using the terminal following the instructions above.

3. Run the generated script in the terminal with:

Discussion:

What changed when you converted the notebook to the script?
What would have happened if the notebook was not written with linear execution in
mind?
what would you have to do if you wanted to change the date range for the plotting?
Is this something you think you can use in your work?

There are some other ways of executing your notebook as a script, such as papermill, though
we will not go through these today.

We can now move on to working with command line arguments in scripts, which is where
scripts really shine.

Command-line interfaces (CLI)

 Objectives

Understand the basics of command-line interfaces
Learn how to write code that can change its behaviour based on command-line
arguments

In the previous section, we learned how to convert a Jupyter notebook into a Python script
that is executable from the command line. Though we can now run it in the command line,
every time we want to change something in the analysis we would need to edit the script.

In this section we will learn how to change the behaviour of a script based on command-line
arguments. This will allow us to run the script with different parameters without having to
edit the script every time.

This is useful when you want to share your script with other people, as they wont necesarilly
need to know what is inside the script to run it.

jupyter nbconvert --to script weather_observations.ipynb

python weather_observations.py

https://nbviewer.org/github/coderefinery/python-progression/raw/main/notebooks/weather_observations.ipynb

Command-line arguments with argparse

Command-line arguments are parameters that are passed to a script when running it in the
command line. An example of this is:

In this case, arg1 and arg2 are the command-line arguments that are passed to the script
my_script.py .

argparse is a Python module that makes it easy to write descriptive command-line
arguments, and it also automatically writes useful --help sections for your script.

argparse defines two types of arguments:

Positional arguments: these are required arguments that are passed to the script in a
specific order.
Optional arguments: these are arguments that are not required and can be passed in any
order.

To use argparse you first set up a parser by calling parser = argparse.ArgumentParser() and
then you add arguments using parser.add_argument(args) .

Lets write an example script that takes in a name and a birth date as arguments and prints
them out.

when this is run you have to pass in the name and the date as arguments in this way:

python my_script.py arg1 arg2

import argparse

Initialize the parser
parser = argparse.ArgumentParser()

One positional and one optional argument
parser.add_argument('name', type=str, metavar="N",
 help="The name of the subject")
parser.add_argument('-d', '--date', type=string, default="01/01/2000",
 help="Birth date of the subject")

Parse the arguments and collect them in args
args = parser.parse_args()

print(args.name + " was born on " + args.date)

python birthday.py John -d 01/01/1990

If you run the script without the date argument, it will default to the date specified in the
add_argument function.

If you run the script with the --help flag, you will get a description of the arguments that
the script takes in:

which would return:

Lets now try

✍️ Exercise Scripts-2: Add command-line arguments to a script (15 mins)

Use the example above edit the script weather_observations.py from the previous
exercise to take in the date range as arguments using argparse .

Hint: The script should be able to be run like this:

Hint: try not to do it all at once, but add one or two arguments, test, then add more,
and so on.
Hint: The input and output filenames make sense as positional arguments, since they
must always be given. Input is usually first, then output.
Hint: The start and end dates should be optional parameters with the defaults as they
are in the current script.

Discussion:

What was the main challenge in adding the arguments?

python birthday.py --help

usage: birthday.py [-h] [-d DATE] N

positional arguments:
 N The name of the subject

optional arguments:
 -h, --help show this help message and exit
 -d DATE, --date DATE Birth date of the subject

python weather_observations.py --start 2020-01-01 --end 2020-12-31

What would you have to do if you wanted to add more arguments? or a new analysis?
How would you work with the arguments in for example a slurm submit script?

This is not the only way to add command-line arguments to a script. We encourage you to
explore other ways to do this, such as using sys.argv , doctopt , typer or click .

Good practices and tools

 Objectives

How does good Python code look like? And if we only had 30 minutes, which good
practices should we highlight?
Some of the points are inspired by the excellent Effective Python book by Brett
Slatkin.

Follow the PEP 8 style guide

Please browse the PEP 8 style guide so that you are familiar with the most important
rules.
Using a consistent style makes your code easier to read and understand for others.
You don’t have to check and adjust your code manually. There are tools that can do this
for you (see below).

Linting and static type checking

A linter is a tool that analyzes source code to detect potential errors, unused imports, unused
variables, code style violations, and to improve readability.

Popular linters:
Autoflake
Flake8
Pyflakes
Pycodestyle
Pylint
Ruff

We recommend Ruff since it can do both checking and formatting and you don’t have to
switch between multiple tools.

💬 Linters and formatters can be configured to your liking

These tools typically have good defaults. But if you don’t like the defaults, you can
configure what they should ignore or how they should format or not format.

https://effectivepython.com/
https://pep8.org/
https://pypi.org/project/autoflake/
https://flake8.pycqa.org/
https://pypi.org/project/pyflakes/
https://pycodestyle.pycqa.org/
https://pylint.readthedocs.io/
https://docs.astral.sh/ruff/
https://docs.astral.sh/ruff/

This code example (which we possibly recognize from the previous section about Profiling)
has few problems (highlighted):

Please try whether you can locate these problems using Ruff:

If you use version control and like to have your code checked or formatted before you
commit the change, you can use tools like pre-commit.

Many editors can be configured to automatically check your code as you type. Ruff can also
be used as a language server.
Use an auto-formatter

Ruff is one of the best tools to automatically format your code according to a consistent
style.

To demonstrate how it works, let us try to auto-format a code example which is badly
formatted and also difficult to read:

import re
import requests

def count_unique_words(file_path: str) -> int:
 unique_words = set()
 forgotten_variable = 13
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower()))
 for word in words:
 unique_words.add(word)
 return len(unique_words)

$ ruff check

Badly formatted Auto-formatted

import re
def count_unique_words (file_path : str)->int:
 unique_words=set()
 with open(file_path,"r",encoding="utf-8") as file:
 for line in file:
 words=re.findall(r"\b\w+\b",line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

https://pre-commit.com/
https://docs.astral.sh/ruff/

Other popular formatters:

Black
YAPF

Many editors can be configured to automatically format for you when you save the file.

It is possible to automatically format your code in Jupyter notebooks! For this to work you
need the following three dependencies installed:

More information and a screen-cast of how this works can be found at https://jupyterlab-
code-formatter.readthedocs.io/.
Consider annotating your functions with type hints

Compare these two versions of the same function and discuss how the type hints can help
you and the Python interpreter to understand the function better:

A (static) type checker is a tool that checks whether the types of variables in your code
match the types that you have specified. Popular tools:

Mypy
Pyright (Microsoft)
Pyre (Meta)

jupyterlab-code-formatter
black
isort

Without type hints With type hints

def count_unique_words(file_path):
 unique_words = set()
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

https://black.readthedocs.io/
https://github.com/google/yapf
https://jupyterlab-code-formatter.readthedocs.io/
https://jupyterlab-code-formatter.readthedocs.io/
https://mypy.readthedocs.io/
https://github.com/microsoft/pyright
https://pyre-check.org/

Consider using AI-assisted coding

We can use AI as an assistant/apprentice:

Code completion
Write a test based on an implementation
Write an implementation based on a test

Or we can use AI as a mentor:

Explain a concept
Improve code
Show a different (possibly better) way of implementing the same thing

Example for using a chat-based AI tool.

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/chatgpt.png

Example for using AI to complete code in an editor.

 AI tools open up a box of questions which are beyond our scope here

Legal
Ethical
Privacy
Lock-in/ monopolies
Lack of diversity
Will we still need to learn programming?
How will it affect learning and teaching programming?

Debugging with print statements

Print-debugging is a simple, effective, and popular way to debug your code like this:

Or more elaborate:

But there can be better alternatives:

Logging module

print(f"file_path: {file_path}")

print(f"I am in function count_unique_words and the value of file_path is {file_path}")

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/code-completion.gif
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/code-completion.gif
https://docs.python.org/3/library/logging.html

IceCream offers compact helper functions for print-debugging

Often you can avoid using indices

Especially people coming to Python from other languages tend to use indices where they are
not needed. Indices can be error-prone (off-by-one errors and reading/writing past the end of
the collection).

Iterating

Enumerate if you need the index

Zip if you need to iterate over two collections

import logging

logging.basicConfig(level=logging.DEBUG)

logging.debug("This is a debug message")
logging.info("This is an info message")

from icecream import ic

ic(file_path)

Verbose and can be brittle Better

scores = [13, 5, 2, 3, 4, 3]

for i in range(len(scores)):
 print(scores[i])

Verbose and can be brittle Better

particle_masses = [7.0, 2.2, 1.4, 8.1, 0.9]

for i in range(len(particle_masses)):
 print(f"Particle {i} has mass {particle_masses[i]}")

https://github.com/gruns/icecream

Unpacking

Prefer catch-all unpacking over indexing/slicing

List comprehensions, map, and filter instead of loops

Using an index can be brittle Better

persons = ["Alice", "Bob", "Charlie", "David", "Eve"]
favorite_ice_creams = ["vanilla", "chocolate", "strawberry", "mint", "chocolate"]

for i in range(len(persons)):
 print(f"{persons[i]} likes {favorite_ice_creams[i]} ice cream")

Verbose and can be brittle Better

coordinates = (0.1, 0.2, 0.3)

x = coordinates[0]
y = coordinates[1]
z = coordinates[2]

Verbose and can be brittle Better

scores = [13, 5, 2, 3, 4, 3]

sorted_scores = sorted(scores)

smallest = sorted_scores[0]
rest = sorted_scores[1:-1]
largest = sorted_scores[-1]

print(smallest, rest, largest)
Output: 2 [3, 3, 4, 5] 13

For-loop List comprehension Map

Know your collections

How to choose the right collection type:

Ordered and modifiable: list
Fixed and (rather) immutable: tuple
Key-value pairs: dict
Dictionary with default values: defaultdict from collections
Members are unique, no duplicates: set
Optimized operations at both ends: deque from collections
Cyclical iteration: cycle from itertools
Adding/removing elements in the middle: Create a linked list (e.g. using a dictionary or a
dataclass)
Priority queue: heapq library
Search in sorted collections: bisect library

What to avoid:

string_numbers = ["1", "2", "3", "4", "5"]

integer_numbers = []
for element in string_numbers:
 integer_numbers.append(int(element))

print(integer_numbers)
Output: [1, 2, 3, 4, 5]

For-loop List comprehension Filter

def is_even(number: int) -> bool:
 return number % 2 == 0

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = []
for number in numbers:
 if is_even(number):
 even_numbers.append(number)

print(even_numbers)
Output: [2, 4, 6]

https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/itertools.html#module-itertools
https://docs.python.org/3/library/heapq.html#module-heapq
https://docs.python.org/3/library/bisect.html#module-bisect

Need to add/remove elements at the beginning or in the middle? Don’t use a list.
Need to make sure that elements are unique? Don’t use a list.

Making functions more ergonomic

Less error-prone API functions and fewer backwards-incompatible changes by enforcing
keyword-only arguments:

Use dataclasses or named tuples or dictionaries instead of too many input or output
arguments.
Docstrings instead of comments:

Consider using DeprecationWarning from the warnings module for deprecating functions
or arguments.

Iterating

When working with large lists or large data sets, consider using generators or iterators
instead of lists. Discuss and compare these two:

Beware of functions which iterate over the same collection multiple times. With
generators, you can iterate only once.
Know about itertools which provides a lot of functions for working with iterators.

Dataclasses

Dataclasses are often a good alternative to regular classes:

def send_message(*, message: str, recipient: str) -> None:
 print(f"Sending to {recipient}: {message}")

def send_message(*, message: str, recipient: str) -> None:
 """
 Sends a message to a recipient.

 Parameters:
 - message (str): The content of the message.
 - recipient (str): The name of the person receiving the message.
 """
 print(f"Sending to {recipient}: {message}")

even_numbers1 = [number for number in range(10000000) if number % 2 == 0]

even_numbers2 = (number for number in range(10000000) if number % 2 == 0)

https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/itertools.html#module-itertools

Use relative paths and pathlib

Scripts that read data from absolute paths are not portable and typically break when
shared with a colleague or support help desk or reused by the next student/PhD
student/postdoc.
pathlib is a modern and portable way to handle paths in Python.

Project structure

As your project grows from a simple script, you should consider organizing your code into
modules and packages.
Function too long? Consider splitting it into multiple functions.
File too long? Consider splitting it into multiple files.
Difficult to name a function or file? It might be doing too much or unrelated things.
If your script can be imported into other scripts, wrap your main function in a if
__name__ == "__main__": block:

Why this construct? You can try to either import or run the following script:

Regular class Dataclass Named tuple

class Point:
 def __init__(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

 def __repr__(self):
 return f"Point(x={self.x}, y={self.y}, z={self.z})"

 def __eq__(self, other):
 if not isinstance(other, Point):
 return NotImplemented
 return self.x == other.x and self.y == other.y and self.z == other.z

def main():
 ...

if __name__ == "__main__":
 main()

if __name__ == "__main__":
 print("I am being run as a script") # importing will not run this part
else:
 print("I am being imported")

https://docs.python.org/3/library/pathlib.html#module-pathlib

Try to have all code inside some function. This can make it easier to understand, test, and
reuse. It can also help Python to free up memory when the function is done.

Reading and writing files

Good construct to know to read a file:

Reading a huge data file? Read and process it in chunks or buffered or use a library which
does it for you.
On supercomputers, avoid reading and writing thousands of small files.
For input files, consider using standard formats like CSV, YAML, or TOML - then you don’t
need to write a parser.

Use subprocess instead of os.system

Many things can go wrong when launching external processes from Python. The
subprocess module is the recommended way to do this.
os.system is not portable and not secure enough.

Parallelizing

Use one of the many libraries: multiprocessing , mpi4py , Dask, Parsl, …
Identify independent tasks.
More often than not, you can convert an expensive loop into a command-line tool and
parallelize it using workflow management tools like Snakemake.

Version control (motivation)

 Objectives

Browse commits and branches of a Git repository.
Remember that commits are like snapshots of the repository at a certain point in time.
Know the difference between Git (something that tracks changes) and GitHub/GitLab
(a web platform to host Git repositories).

Why do we need to keep track of versions?

Version control is an answer to the following questions (do you recognize some of them?):

“It broke … hopefully I have a working version somewhere?”
“Can you please send me the latest version?”
“Where is the latest version?”

with open("input.txt", "r") as file:
 for line in file:
 print(line)

https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://dask.org/
https://parsl-project.org/
https://snakemake.github.io/

“Which version are you using?”
“Which version have the authors used in the paper I am trying to reproduce?”
“Found a bug! Since when was it there?”
“I am sure it used to work. When did it change?”
“My laptop is gone. Is my thesis now gone?”

Demonstration

Example repository: https://github.com/workshop-material/planets
Commits are like snapshots and if we break something we can go back to a previous
snapshot.
Commits carry metadata about changes: author, date, commit message, and a checksum.
Branches are like parallel universes where you can experiment with changes without
affecting the default branch: https://github.com/workshop-material/planets/network
(“Insights” -> “Network”)
With version control we can annotate code (example).
Collaboration: We can fork (make a copy on GitHub), clone (make a copy to our
computer), review, compare, share, and discuss.
Code review: Others can suggest changes using pull requests or merge requests. These
can be reviewed and discussed before they are merged. Conceptually, they are similar to
“suggesting changes” in Google Docs.

Features: roll-back, branching, merging, collaboration

Roll-back: you can always go back to a previous version and compare
Branching and merging:

Work on different ideas at the same time
You can experiment with an idea and discard it if it turns out to be a bad idea
Different people can work on the same code/project without interfering

https://github.com/workshop-material/planets
https://github.com/workshop-material/planets/network
https://github.com/workshop-material/planets/blame/main/simulate.py

Image created using https://gopherize.me/ (inspiration).

Collaboration: review, compare, share, discuss
Example network graph

Talking about code

Which of these two is more practical?

1. “Clone the code, go to the file ‘simulate.py’, and search for ‘force_between_planets’. Oh!
But make sure you use the version from September 2024.”

2. Or I can send you a permalink: https://github.com/workshop-
material/planets/blob/1343ac0/simulate.py#L31C5-L39

What we typically like to snapshot

Software (this is how it started but Git/GitHub can track a lot more)
Scripts
Documents (plain text files much better suitable than Word documents)
Manuscripts (Git is great for collaborating/sharing LaTeX or Quarto manuscripts)
Configuration files
Website sources
Data

💬 Discussion

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960
https://github.com/workshop-material/planets/network
https://github.com/workshop-material/planets/blob/1343ac0/simulate.py#L31C5-L39
https://github.com/workshop-material/planets/blob/1343ac0/simulate.py#L31C5-L39
https://quarto.org/

In this example somebody tried to keep track of versions without a version control system
tool like Git. Discuss the following directory listing. What possible problems do you
anticipate with this kind of “version control”:

✔︎Solution

Giving a version to a collaborator and merging changes later with own changes
sounds like lots of work.
What if you discover a bug and want to know since when the bug existed?

Where to learn more

CodeRefinery lessons with focus on collaboration and not only for the command line:

Introduction to version control (day 1-2): Why we want to track versions and how to go
back in time to a working version. This lesson brings you from zero to using Git and
GitHub for own projects.
Collaborative distributed version control (day 3): This lesson builds on “Introduction to
version control” and we apply branching and learn about pull requests (merge requests),
forks, and collaboration using Git and GitHub.

Reproducible environments and dependencies

 Objectives

There are not many codes that have no dependencies. How should we deal with
dependencies?
We will focus on installing and managing dependencies in Python when using
packages from PyPI and Conda.
We will not discuss how to distribute your code as a package.

[This episode borrows from https://coderefinery.github.io/reproducible-python/reusable/ and
https://aaltoscicomp.github.io/python-for-scicomp/dependencies/]

Essential XKCD comics:

myproject-2019.zip
myproject-2020-february.zip
myproject-2021-august.zip
myproject-2023-09-19-working.zip
myproject-2023-09-21.zip
myproject-2023-09-21-test.zip
myproject-2023-09-21-myversion.zip
myproject-2023-09-21-newfeature.zip
...
(100 more files like these)

https://coderefinery.org/lessons/
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/reproducible-python/reusable/
https://aaltoscicomp.github.io/python-for-scicomp/dependencies/

xkcd - dependency
xkcd - superfund

How to avoid: “It works on my machine 🤷”

Use a standard way to list dependencies in your project:

Python: requirements.txt or environment.yml
R: DESCRIPTION or renv.lock
Rust: Cargo.lock
Julia: Project.toml
C/C++/Fortran: CMakeLists.txt or Makefile or spack.yaml or the module system on
clusters or containers
Other languages: …

Two ecosystems: PyPI (The Python Package Index) and Conda

 PyPI

Installation tool: pip or uv or similar
Traditionally used for Python-only packages or for Python interfaces to external
libraries. There are also packages that have bundled external libraries (such as numpy).
Pros:

Easy to use
Package creation is easy

Cons:
Installing packages that need external libraries can be complicated

 Conda

Installation tool: conda or mamba or similar
Aims to be a more general package distribution tool and it tries to provide not only the
Python packages, but also libraries and tools needed by the Python packages.
Pros:

Quite easy to use
Easier to manage packages that need external libraries
Not only for Python

Cons:
Package creation is harder

Conda ecosystem explained

https://xkcd.com/2347/
https://xkcd.com/1987/

Anaconda is a distribution of conda packages made by Anaconda Inc. When using
Anaconda remember to check that your situation abides with their licensing terms (see
below).
Anaconda has recently changed its licensing terms, which affects its use in a professional
setting. This caused uproar among academia and Anaconda modified their position in this
article.

Main points of the article are:

conda (installation tool) and community channels (e.g. conda-forge) are free to use.
Anaconda repository and Anaconda’s channels in the community repository are free
for universities and companies with fewer than 200 employees. Non-university
research institutions and national laboratories need licenses.
Miniconda is free, when it does not download Anaconda’s packages.
Miniforge is not related to Anaconda, so it is free.

For ease of use on sharing environment files, we recommend using Miniforge to create
the environments and using conda-forge as the main channel that provides software.

Major repositories/channels:

Anaconda Repository houses Anaconda’s own proprietary software channels.
Anaconda’s proprietary channels: main , r , msys2 and anaconda . These are
sometimes called defaults .
conda-forge is the largest open source community channel. It has over 28k packages
that include open-source versions of packages in Anaconda’s channels.

Tools and distributions for dependency management in Python

Poetry: Dependency management and packaging.
Pipenv: Dependency management, alternative to Poetry.
pyenv: If you need different Python versions for different projects.
virtualenv: Tool to create isolated Python environments for PyPI packages.
micropipenv: Lightweight tool to “rule them all”.
Conda: Package manager for Python and other languages maintained by Anaconda Inc.
Miniconda: A “miniature” version of conda, maintained by Anaconda Inc. By default uses
Anaconda’s channels. Check licensing terms when using these packages.
Mamba: A drop in replacement for conda. It used be much faster than conda due to better
dependency solver but nowadays conda also uses the same solver. It still has some UI
improvements.
Micromamba: Tiny version of the Mamba package manager.
Miniforge: Open-source Miniconda alternative with conda-forge as the default channel
and optionally mamba as the default installer.
Pixi: Modern, super fast tool which can manage conda environments.
uv: Modern, super fast replacement for pip, poetry, pyenv, and virtualenv. You can also
switch between Python versions.

Best practice: Install dependencies into isolated environments

https://www.anaconda.com/
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://repo.anaconda.com/
https://conda-forge.org/
https://python-poetry.org/
https://pipenv.pypa.io/
https://github.com/pyenv/pyenv
https://docs.python.org/3/library/venv.html
https://github.com/thoth-station/micropipenv
https://docs.conda.io/
https://docs.anaconda.com/miniconda/
https://mamba.readthedocs.io/
https://conda.org/blog/2023-11-06-conda-23-10-0-release/
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://github.com/conda-forge/miniforge
https://pixi.sh/
https://docs.astral.sh/uv/

For each project, create a separate environment.
Don’t install dependencies globally for all projects. Sooner or later, different projects will
have conflicting dependencies.
Install them from a file which documents them at the same time Install dependencies by
first recording them in requirements.txt or environment.yml and install using these files,
then you have a trace (we will practice this later below).

 Keypoints

If somebody asks you what dependencies you have in your project, you should be able to
answer this question with a file.

In Python, the two most common ways to do this are:

requirements.txt (for pip and virtual environments)
environment.yml (for conda and similar)

You can export (“freeze”) the dependencies from your current environment into these
files:

How to communicate the dependencies as part of a report/thesis/publication

Each notebook or script or project which depends on libraries should come with either a
requirements.txt or a environment.yml , unless you are creating and distributing this project

as Python package.

Attach a requirements.txt or a environment.yml to your thesis.
Even better: Put requirements.txt or a environment.yml in your Git repository along
your code.
Even better: Also binderize your analysis pipeline.

Containers

A container is like an operating system inside a file.
“Building a container”: Container definition file (recipe) -> Container image
This can be used with Apptainer/ SingularityCE.

Containers offer the following advantages:

inside a conda environment
$ conda env export --from-history > environment.yml

inside a virtual environment
$ pip freeze > requirements.txt

https://mybinder.org/
https://apptainer.org/
https://sylabs.io/singularity/

Reproducibility: The same software environment can be recreated on different
computers. They force you to know and document all your dependencies.
Portability: The same software environment can be run on different computers.
Isolation: The software environment is isolated from the host system.
“Time travel”:

You can run old/unmaintained software on new systems.
Code that needs new dependencies which are not available on old systems can still be
run on old systems.

How to install dependencies into environments

Now we understand a bit better why and how we installed dependencies for this course in
the Software install instructions.

We have used Miniforge and the long command we have used was:

This command did two things:

Create a new environment with name “course” (specified by -n).
Installed all dependencies listed in the environment.yml file (specified by -f), which we
fetched directly from the web. Here you can browse it.

For your own projects:

1. Start by writing an environment.yml of requirements.txt file. They look like this:

$ mamba env create -n course -f https://raw.githubusercontent.com/coderefinery/python-
progression/main/software/environment.yml

environment.yml requirements.txt

https://github.com/coderefinery/python-progression/blob/main/software/environment.yml

2. Then set up an isolated environment and install the dependencies from the file into it:

Updating environments

name: course
channels:
 - conda-forge
dependencies:
 - python <= 3.12
 - jupyterlab
 - altair-all
 - vega_datasets
 - pandas
 - numpy
 - pytest
 - scalene
 - ruff
 - icecream
 - myst-parser
 - sphinx
 - sphinx-rtd-theme
 - sphinx-autoapi
 - sphinx-autobuild

Miniforge Pixi Virtual environment uv

Create a new environment with name “myenv” from environment.yml :

Or equivalently:

Activate the environment:

Run your code inside the activated virtual environment.

$ conda env create -n myenv -f environment.yml

$ mamba env create -n myenv -f environment.yml

$ conda activate myenv

$ python example.py

What if you forgot a dependency? Or during the development of your project you realize
that you need a new dependency? Or you don’t need some dependency anymore?

1. Modify the environment.yml or requirements.txt file.
2. Either remove your environment and create a new one, or update the existing one:

Pinning package versions

Let us look at the environment.yml which we used to set up the environment for this
progression course. Dependencies are listed without version numbers. Should we pin the
versions?

Both pip and conda ecosystems and all the tools that we have mentioned support
pinning versions.
It is possible to define a range of versions instead of precise versions.
While your project is still in progress, I often use latest versions and do not pin them.
When publishing the script or notebook, it is a good idea to pin the versions to ensure
that the code can be run in the future.
Remember that at some point in time you will face a situation where newer versions of
the dependencies are no longer compatible with your software. At this point you’ll have
to update your software to use the newer versions or to lock it into a place in time.

Managing dependencies on a supercomputer

Additional challenges:
Storage quotas: Do not install dependencies in your home directory. A conda
environment can easily contain 100k files.
Network file systems struggle with many small files. Conda environments often
contain many small files.

Possible solutions:

Miniforge Pixi Virtual environment uv

Update the environment by running:

Or equivalently:

$ conda env update --file environment.yml

$ mamba env update --file environment.yml

https://github.com/coderefinery/python-progression/blob/main/software/environment.yml

Try Pixi (modern take on managing Conda environments) and uv (modern take on
managing virtual environments). Blog post: Using Pixi and uv on a supercomputer
Install your environment on the fly into a scratch directory on local disk (not the
network file system).
Install your environment on the fly into a RAM disk/drive.
Containerize your environment into a container image.

 Keypoints

Being able to communicate your dependencies is not only nice for others, but also for
your future self or the next PhD student or post-doc.
If you ask somebody to help you with your code, they will ask you for the
dependencies.

Where to start with documentation

 Objectives

Discuss what makes good documentation.
Improve the README of your project or our example project.
Explore Sphinx which is a popular tool to build documentation websites.
Learn how to leverage GitHub Actions and GitHub Pages to build and deploy
documentation.

Why? 💗✉️ to your future self

You will probably use your code in the future and may forget details.
You may want others to use your code or contribute (almost impossible without
documentation).

In-code documentation

Not very useful (more commentary than comment):

More useful (explaining why):

now we check if temperature is below -50
if temperature < -50:
 print("ERROR: temperature is too low")

we regard temperatures below -50 degrees as measurement errors
if temperature < -50:
 print("ERROR: temperature is too low")

https://pixi.sh/
https://docs.astral.sh/uv/
https://research-software.uit.no/blog/2025-pixi-and-uv/

Keeping zombie code “just in case” (rather use version control):

Emulating version control:

Many languages allow “docstrings”

Example (Python):

 Keypoints

Documentation which is only in the source code is not enough.
Often a README is enough.
Documentation needs to be kept in the same Git repository as the code since we
want it to evolve with the code.

Often a README is enough - checklist

Purpose

do not run this code!
if temperature > 0:
print("It is warm")

John Doe: threshold changed from 0 to 15 on August 5, 2013
if temperature > 15:
 print("It is warm")

def kelvin_to_celsius(temp_k: float) -> float:
 """
 Converts temperature in Kelvin to Celsius.

 Parameters

 temp_k : float
 temperature in Kelvin

 Returns

 temp_c : float
 temperature in Celsius
 """
 assert temp_k >= 0.0, "ERROR: negative T_K"

 temp_c = temp_k - 273.15

 return temp_c

Requirements
Installation instructions
Copy-paste-able example to get started
Tutorials covering key functionality
Reference documentation (e.g. API) covering all functionality
Authors and recommended citation
License
Contribution guide

See also the JOSS review checklist.
Diátaxis

Diátaxis is a systematic approach to technical documentation authoring.

Overview: https://diataxis.fr/
How to use Diátaxis as a guide to work: https://diataxis.fr/how-to-use-diataxis/

What if you need more than a README?

Write documentation in Markdown (.md) or reStructuredText (.rst) or R Markdown (.Rmd)
In the same repository as the code -> version control and reproducibility
Use one of many tools to build HTML out of md/rst/Rmd: Sphinx, MkDocs, Zola, Jekyll,
Hugo, RStudio, knitr, bookdown, blogdown, …
Deploy the generated HTML to GitHub Pages or GitLab Pages

Setting up a Sphinx documentation

⚙ Preparation

In this episode we will use the following 5 packages which we installed previously as part
of the Software install instructions:

There are at least two ways to get started with Sphinx:

1. Use sphinx-quickstart to create a new Sphinx project.
2. This is what we will do instead: Create three files (doc/conf.py , doc/index.md , and

doc/about.md) as starting point and improve from there.

myst-parser
sphinx
sphinx-rtd-theme
sphinx-autoapi
sphinx-autobuild

https://joss.readthedocs.io/en/latest/review_checklist.html
https://diataxis.fr/
https://diataxis.fr/how-to-use-diataxis/
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/ReStructuredText
https://rmarkdown.rstudio.com/
https://sphinx-doc.org/
https://www.mkdocs.org/
https://www.getzola.org/
https://jekyllrb.com/
https://gohugo.io/
https://yihui.org/knitr/
https://bookdown.org/
https://bookdown.org/yihui/blogdown/
https://pages.github.com/
https://docs.gitlab.com/ee/user/project/pages/

✍️ Exercise: Set up a Sphinx documentation

1. Create the following three files in your project:

This is conf.py :

This is index.md (feel free to change the example text):

This is about.md (feel free to adjust):

your-project/
├── doc/
│ ├── conf.py
│ ├── index.md
│ └── about.md
└── ...

project = "your-project"
copyright = "2025, Authors"
author = "Authors"
release = "0.1"

exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]

extensions = [
 "myst_parser", # in order to use markdown
]

myst_enable_extensions = [
 "colon_fence", # ::: can be used instead of ``` for better rendering
]

html_theme = "sphinx_rtd_theme"

Our code documentation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

:::{toctree}
:maxdepth: 2
:caption: Some caption

about.md
:::

About this code

Work in progress ...

2. Run sphinx-build to build the HTML documentation:

3. Try to open _build/index.html in your browser.
4. Experiment with adding more content, images, equations, code blocks, …

typography
images
math and equations
code blocks

There is a lot more you can do:

This is useful if you want to check the integrity of all internal and external links:

sphinx-autobuild provides a local web server that will automatically refresh your view
every time you save a file - which makes writing with live-preview much easier.

How to auto-generate API documentation in Python

Add three tiny modifications (highlighted) to doc/conf.py to auto-generate API
documentation (this requires the sphinx-autoapi package):

$ sphinx-build doc _build

... lots of output ...
The HTML pages are in _build.

$ sphinx-build doc -W -b linkcheck _build

https://myst-parser.readthedocs.io/en/latest/syntax/typography.html
https://myst-parser.readthedocs.io/en/latest/syntax/images_and_figures.html
https://myst-parser.readthedocs.io/en/latest/syntax/math.html
https://myst-parser.readthedocs.io/en/latest/syntax/code_and_apis.html
https://pypi.org/project/sphinx-autobuild/

Then rebuild the documentation (or push the changes and let GitHub rebuild it) and you
should see a new section “API Reference”.
Possibilities to host Sphinx documentation

Build with GitHub Actions and deploy to GitHub Pages.
Build with GitLab CI/CD and deploy to GitLab Pages.
Build with Read the Docs and host there.

Confused about reStructuredText vs. Markdown vs. MyST?

At the beginning there was reStructuredText and Sphinx was built for reStructuredText.
Independently, Markdown was invented and evolved into a couple of flavors.
Markdown became more and more popular but was limited compared to
reStructuredText.
Later, MyST was invented to be able to write something that looks like Markdown but in
addition can do everything that reStructuredText can do with extra directives.

Where to read more

CodeRefinery documentation lesson
Sphinx documentation
Sphinx + ReadTheDocs guide
For more Markdown functionality, see the Markdown guide.
For Sphinx additions, see Sphinx Markup Constructs.
An opinionated guide on documentation in Python

project = "your-project"
copyright = "2025, Authors"
author = "Authors"
release = "0.1"

exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]

extensions = [
 "myst_parser", # in order to use markdown
 "autoapi.extension", # in order to use markdown
]

search this directory for Python files
autoapi_dirs = [".."]

ignore this file when generating API documentation
autoapi_ignore = ["*/conf.py"]

myst_enable_extensions = [
 "colon_fence", # ::: can be used instead of ``` for better rendering
]

html_theme = "sphinx_rtd_theme"

https://github.com/features/actions
https://pages.github.com/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/pages/
https://about.readthedocs.com/
https://myst-parser.readthedocs.io/en/latest/syntax/typography.html
https://coderefinery.github.io/documentation/
https://www.sphinx-doc.org/
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/index.html
https://www.markdownguide.org/basic-syntax/
https://www.sphinx-doc.org/en/master/markup/index.html
https://docs.python-guide.org/writing/documentation/

Profiling

 Objectives

Understand when improving code performance is worth the time and effort.
Knowing how to find performance bottlenecks in Python code.
Try Scalene as one of many tools to profile Python code.

[This page is adapted after https://aaltoscicomp.github.io/python-for-scicomp/profiling/]

Should we even optimize the code?

Classic quote to keep in mind: “Premature optimization is the root of all evil.” [Donald Knuth]

💬 Discussion

It is important to ask ourselves whether it is worth it.

Is it worth spending e.g. 2 days to make a program run 20% faster?
Is it worth optimizing the code so that it spends 90% less memory?

Depends. What does it depend on?

Measure instead of guessing

Before doing code surgery to optimize the run time or lower the memory usage, we should
measure where the bottlenecks are. This is called profiling.

Analogy: Medical doctors don’t start surgery based on guessing. They first measure (X-ray,
MRI, …) to know precisely where the problem is.

Not only programming beginners can otherwise guess wrong, but also experienced
programmers can be surprised by the results of profiling.

One of the simplest tools is to insert timers

Below we will list some tools that can be used to profile Python code. But even without
these tools you can find time-consuming parts of your code by inserting timers:

https://github.com/plasma-umass/scalene
https://aaltoscicomp.github.io/python-for-scicomp/profiling/

Many tools exist

The list below here is probably not complete, but it gives an overview of the different tools
available for profiling Python code.

CPU profilers:

cProfile and profile
line_profiler
py-spy
Yappi
pyinstrument
Perfetto

Memory profilers:

memory_profiler (not actively maintained)
Pympler
tracemalloc
guppy/heapy

Both CPU and memory:

Scalene

In the exercise below, we will use Scalene to profile a Python program. Scalene is a sampling
profiler that can profile CPU, memory, and GPU usage of Python.

Tracing profilers vs. sampling profilers

Tracing profilers record every function call and event in the program, logging the exact
sequence and duration of events.

import time

...
code before the function

start = time.time()
result = some_function()
print(f"some_function took {time.time() - start} seconds")

code after the function
...

https://docs.python.org/3/library/profile.html
https://kernprof.readthedocs.io/
https://github.com/benfred/py-spy
https://github.com/sumerc/yappi
https://pyinstrument.readthedocs.io/
https://perfetto.dev/docs/analysis/trace-processor-python
https://pypi.org/project/memory-profiler/
https://pympler.readthedocs.io/
https://docs.python.org/3/library/tracemalloc.html
https://github.com/zhuyifei1999/guppy3/
https://github.com/plasma-umass/scalene

Pros:
Provides detailed information on the program’s execution.
Deterministic: Captures exact call sequences and timings.

Cons:
Higher overhead, slowing down the program.
Can generate larger amount of data.

Sampling profilers periodically samples the program’s state (where it is and how much
memory is used), providing a statistical view of where time is spent.

Pros:
Lower overhead, as it doesn’t track every event.
Scales better with larger programs.

Cons:
Less precise, potentially missing infrequent or short calls.
Provides an approximation rather than exact timing.

💬 Analogy: Imagine we want to optimize the London Underground (subway) system

We wish to detect bottlenecks in the system to improve the service and for this we have
asked few passengers to help us by tracking their journey.

Tracing: We follow every train and passenger, recording every stop and delay. When
passengers enter and exit the train, we record the exact time and location.
Sampling: Every 5 minutes the phone notifies the passenger to note down their
current location. We then use this information to estimate the most crowded stations
and trains.

Choosing the right system size

Sometimes we can configure the system size (for instance the time step in a simulation or the
number of time steps or the matrix dimensions) to make the program finish sooner.

For profiling, we should choose a system size that is representative of the real-world use
case. If we profile a program with a small input size, we might not see the same bottlenecks
as when running the program with a larger input size.

Often, when we scale up the system size, or scale the number of processors, new bottlenecks
might appear which we didn’t see before. This brings us back to: “measure instead of
guessing”.

Exercises

✍️ Exercise: Practicing profiling

In this exercise we will use the Scalene profiler to find out where most of the time is spent
and most of the memory is used in a given code example.

Please try to go through the exercise in the following steps:

1. Make sure scalene is installed in your environment (if you have followed this course
from the start and installed the recommended software environment, then it is).

2. Download Leo Tolstoy’s “War and Peace” from the following link (the text is provided
by Project Gutenberg): https://www.gutenberg.org/cache/epub/2600/pg2600.txt
(right-click and “save as” to download the file and save it as “book.txt”).

3. Before you run the profiler, try to predict in which function the code (the example
code is below) will spend most of the time and in which function it will use most of
the memory.

4. Save the example code as example.py and run the scalene profiler on the following
code example and browse the generated HTML report to find out where most of the
time is spent and where most of the memory is used:

Alternatively you can do this (and then open the generated file in a browser):

You can find an example of the generated HTML report in the solution below.

5. Does the result match your prediction? Can you explain the results?

Example code (example.py):

$ scalene example.py

$ scalene example.py --html > profile.html

https://www.gutenberg.org/
https://www.gutenberg.org/cache/epub/2600/pg2600.txt

✔︎Solution

"""
The code below reads a text file and counts the number of unique words in it
(case-insensitive).
"""
import re

def count_unique_words1(file_path: str) -> int:
 with open(file_path, "r", encoding="utf-8") as file:
 text = file.read()
 words = re.findall(r"\b\w+\b", text.lower())
 return len(set(words))

def count_unique_words2(file_path: str) -> int:
 unique_words = []
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 if word not in unique_words:
 unique_words.append(word)
 return len(unique_words)

def count_unique_words3(file_path: str) -> int:
 unique_words = set()
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

def main():
 # book.txt is downloaded from
https://www.gutenberg.org/cache/epub/2600/pg2600.txt
 _result = count_unique_words1("book.txt")
 _result = count_unique_words2("book.txt")
 _result = count_unique_words3("book.txt")

if __name__ == "__main__":
 main()

Result of the profiling run for the above code example. You can click on the image to make
it larger.

Results:

Most time is spent in the count_unique_words2 function.
Most memory is used in the count_unique_words1 function.

Explanation:

The count_unique_words2 function is the slowest because it uses a list to store
unique words and checks if a word is already in the list before adding it. Checking
whether a list contains an element might require traversing the whole list, which is
an O(n) operation. As the list grows in size, the lookup time increases with the size
of the list.
The count_unique_words1 and count_unique_words3 functions are faster because
they use a set to store unique words. Checking whether a set contains an element
is an O(1) operation.
The count_unique_words1 function uses the most memory because it creates a list
of all words in the text file and then creates a set from that list.
The count_unique_words3 function uses less memory because it traverses the text
file line by line instead of reading the whole file into memory.

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/exercise.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/exercise.png

What we can learn from this exercise:

When processing large files, it can be good to read them line by line or in batches
instead of reading the whole file into memory.
It is good to get an overview over standard data structures and their advantages
and disadvantages (e.g. adding an element to a list is fast but checking whether it
already contains the element can be slow).

Additional resources

Python performance workshop (by ENCCS)

Automated testing

 Objectives

Know where to start in your own project.
Know what possibilities and techniques are available in the Python world.

Motivation

Testing is a way to check that the code does what it is expected to.

Less scary to change code: tests will tell you whether something broke.
Easier for new people to join.
Easier for somebody to revive an old code.
End-to-end test: run the whole code and compare result to a reference.
Unit tests: test one unit (function or module). Can guide towards better structured code:
complicated code is more difficult to test.

How testing is often taught

How this feels:

def add(a, b):
 return a + b

def test_add():
 assert add(1, 2) == 3

https://enccs.github.io/python-perf/profile/

[Citation needed]
Where to start

Do I even need testing?:

A simple script or notebook probably does not need an automated test.

If you have nothing yet:

Start with an end-to-end test.
Describe in words how you check whether the code still works.
Translate the words into a script (any language).
Run the script automatically on every code change (GitHub Actions or GitLab CI).

If you want to start with unit-testing:

You want to rewrite a function? Start adding a unit test right there first.
You spend few days chasing a bug? Once you fix it, add a test to make sure it does not
come back.

Pytest

Here is a simple example of a test:

file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/owl.png
file:///home/runner/work/python-progression/python-progression/_build/pyppeteer/_images/owl.png

To run the test(s):

Explanation: pytest will look for functions starting with test_ in files and directories given
as arguments. It will run them and report the results.

Good practice to add unit tests:

Add the test function and run it.
Break the function on purpose and run the test.
Does the test fail as expected?

What else is possible

Run the test set automatically on every code change:
GitHub Actions
GitLab CI

The testing above used example-based testing.
Test coverage: how much of the code is traversed by tests?

Python: pytest-cov
Result can be deployed to services like Codecov or Coveralls.

Property-based testing: generates arbitrary data matching your specification and checks
that your guarantee still holds in that case.

Python: hypothesis
Snapshot-based testing: makes it easier to generate snapshots for regression tests.

Python: syrupy
Mutation testing: tests pass -> change a line of code (make a mutant) -> test again and
check whether all mutants get “killed”.

Python: mutmut

Further reading

def fahrenheit_to_celsius(temp_f):
 """Converts temperature in Fahrenheit
 to Celsius.
 """
 temp_c = (temp_f - 32.0) * (5.0/9.0)
 return temp_c

this is the test function
def test_fahrenheit_to_celsius():
 temp_c = fahrenheit_to_celsius(temp_f=100.0)
 expected_result = 37.777777
 # assert raises an error if the condition is not met
 assert abs(temp_c - expected_result) < 1.0e-6

$ pytest example.py

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://pytest-cov.readthedocs.io/
https://about.codecov.io/
https://coveralls.io/
https://hypothesis.readthedocs.io/
https://syrupy-project.github.io/syrupy/
https://mutmut.readthedocs.io/

CodeRefinery lesson about automated testing

Credit

The following material (all CC-BY) was reused to create this workshop material:

https://aaltoscicomp.github.io/python-for-scicomp/
https://coderefinery.github.io/data-visualization-python/
https://coderefinery.github.io/reproducible-python/
https://coderefinery.github.io/jupyter/

https://coderefinery.github.io/testing/
https://aaltoscicomp.github.io/python-for-scicomp/
https://coderefinery.github.io/data-visualization-python/
https://coderefinery.github.io/reproducible-python/
https://coderefinery.github.io/jupyter/

