


/ Reproducible research software development using Python (ML example) documentation

Reproducible research software development
using Python (ML example)

Big-picture goal

This is a hands-on course on research software engineering. In this workshop we assume
that most workshop participants use Python in their work or are leading a group which uses
Python. Therefore, some of the examples will use Python as the example language.

We will work with an example project (Example project: 2D classification task using a
nearest-neighbor predictor) and go through all important steps of a typical software project.
Once we have seen the building blocks, we will try to apply them to own projects.

⚙ Preparation

1. Get a GitHub account following these instructions.
2. You will need a text editor. If you don’t have a favorite one, we recommend VS Code.
3. If you prefer to work in the terminal and not in VS Code, set up these two (skip this if

you use VS Code):
Git in the terminal
SSH or HTTPS connection to GitHub from terminal

4. Follow Software install instructions (but we will do this together at the beginning of
the workshop).

Schedule

Monday

09:00-10:00 - Getting started
Welcome and introduction
Software install instructions
Example project: 2D classification task using a nearest-neighbor predictor

10:15-11:30 - Introduction to version control with Git and GitHub (1/2)
Motivation
Forking, cloning, and browsing
Creating branches and commits

11:30-12:15 - Lunch break
12:15-13:30 - Introduction to version control with Git and GitHub (2/2)

https://coderefinery.github.io/installation/github/
https://coderefinery.github.io/installation/vscode/
https://coderefinery.github.io/installation/git-in-terminal/
https://coderefinery.github.io/installation/ssh/

Merging changes and contributing to the project
Conflict resolution
Practical advice: How much Git is necessary?
Optional: How to turn your project to a Git repo and share it

13:45-15:00 - Where to start with documentation

Tuesday

09:00-10:00 - Collaborative version control and code review (1/2)
Concepts around collaboration
Collaborating within the same repository

10:15-11:30 - Collaborative version control and code review (2/2)
Practicing code review
How to contribute changes to repositories that belong to others

11:30-12:15 - Lunch break
12:15-12:45 - Reproducible environments and dependencies
12:45-13:30 - Working with Notebooks

Notebooks and version control
Other useful tooling for notebooks
Sharing notebooks

13:30-14:15 - Other useful tools for Python development
Tools and useful practices
Profiling

14:15-15:00 - Debriefing and Q&A
Participants work on their projects
Together we study actual codes that participants wrote or work on
Constructively we discuss possible improvements
Give individual feedback on code projects

Wednesday

09:00-10:00 - Automated testing
10:15-11:30 - Modular code development

Concepts in refactoring and modular code design
How to parallelize independent tasks using workflows (example: Snakemake)

11:30-12:15 - Lunch break
12:15-14:00 - How to release and publish your code

Choosing a software license
How to publish your code
Creating a Python package and deploying it to PyPI

14:15-15:00 - Debriefing and Q&A
Participants work on their projects
Together we study actual codes that participants wrote or work on
Constructively we discuss possible improvements
Give individual feedback on code projects

Thursday

09:00-15:00
Moving from laptop to high-performance computing (demo/type-along)
Introduction to the exam

Software install instructions

[this page is adapted from https://aaltoscicomp.github.io/python-for-scicomp/installation/]

Choosing an installation method

For this course we will install an isolated environment with following dependencies:

 If you have a tool/method that works for you, keep using it

environment.yml requirements.txt

name: course
channels:
 - conda-forge
 - bioconda
dependencies:
 - python <= 3.12
 - click
 - numpy
 - pandas
 - scipy
 - altair
 - vl-convert-python
 - jupyterlab
 - pytest
 - scalene
 - flit
 - ruff
 - icecream
 - snakemake-minimal
 - myst-parser
 - sphinx
 - sphinx-rtd-theme
 - sphinx-autoapi
 - sphinx-autobuild
 - black
 - isort
 - pip
 - pip:
 - jupyterlab-code-formatter

https://aaltoscicomp.github.io/python-for-scicomp/installation/

If you are used to installing packages in Python and know what to do with the above files,
please follow your own preferred installation method.

If you are new to Python or unsure how to create isolated environments in Python from files
above, please follow the instructions below.

💬 There are many choices and we try to suggest a good compromise

There are very many ways to install Python and packages with pros and cons and in
addition there are several operating systems with their own quirks. This can be a huge
challenge for beginners to navigate. It can also difficult for instructors to give
recommendations for something which will work everywhere and which everybody will
like.

Below we will recommend Miniforge since it is free, open source, general, available on all
operating systems, and provides a good basis for reproducible environments. However, it
does not provide a graphical user interface during installation. This means that every time
we want to start a JupyterLab session, we will have to go through the command line.

 Python, conda, anaconda, miniforge, etc?

Unfortunately there are many options and a lot of jargon. Here is a crash course:

Python is a programming language very commonly used in science, it’s the topic of this
course.
Conda is a package manager: it allows distributing and installing packages, and is
designed for complex scientific code.
Mamba is a re-implementation of Conda to be much faster with resolving
dependencies and installing things.
An environment is a self-contained collections of packages which can be installed
separately from others. They are used so each project can install what it needs
without affecting others.
Anaconda is a commercial distribution of Python+Conda+many packages that all work
together. It used to be freely usable for research, but since ~2023-2024 it’s more
limited. Thus, we don’t recommend it (even though it has a nice graphical user
interface).
conda-forge is another channel of distributing packages that is maintained by the
community, and thus can be used by anyone. (Anaconda’s parent company also hosts
conda-forge packages)
Miniforge is a distribution of conda pre-configured for conda-forge. It operates via the
command line.
Miniconda is a distribution of conda pre-configured to use the Anaconda channels.

We will gain a better background and overview in the section Reproducible environments
and dependencies.

Installing Python via Miniforge

Follow the instructions on the miniforge web page. This installs the base, and from here
other packages can be installed.

Unsure what to download and what to do with it?

Installing and activating the software environment

First we will start Python in a way that activates conda/mamba. Then we will install the
software environment from this environment.yml file.

An environment is a self-contained set of extra libraries - different projects can use different
environments to not interfere with each other. This environment will have all of the software
needed for this particular course.

We will call the environment course .

Starting JupyterLab

Every time we want to start a JupyterLab session, we will have to go through the command
line and first activate the course environment.

Windows MacOS Linux

You want to download and run Miniforge3-Windows-x86_64.exe .

Windows Linux / MacOS

Use the “Miniforge Prompt” to start Miniforge. This will set up everything so that conda
and mamba are available. Then type (without the $):

$ mamba env create -n course -f
https://raw.githubusercontent.com/coderefinery/reproducible-python-
ml/main/software/environment.yml

https://github.com/conda-forge/miniforge
https://raw.githubusercontent.com/coderefinery/reproducible-python-ml/main/software/environment.yml

Removing the software environment

How to verify your installation

Start JupyterLab (as described above). It will hopefully open up your browser and look like
this:

Windows Linux / MacOS

Start the Miniforge Prompt. Then type (without the $):

$ conda activate course
$ jupyter-lab

Windows Linux / MacOS

In the Miniforge Prompt, type (without the $):

$ conda env list
$ conda env remove --name course
$ conda env list

JupyterLab opened in the browser. Click on the Python 3 tile.

Once you clicked the Python 3 tile it should look like this:

Python 3 notebook started.

Into that blue “cell” please type the following:

import altair
import pandas

print("all good - ready for the course")

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter1.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter1.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter2.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter2.png

Please copy these lines and click on the “play”/”run” icon.

This is how it should look:

Screenshot after successful import.

If this worked, you are all set and can close JupyterLab (no need to save these changes).

This is how it should not look:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter3.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter3.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter4.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter4.png

Error: required packages could not be found.
Example project: 2D classification task using a nearest-neighbor predictor

The example code that we will study is a relatively simple nearest-neighbor predictor written
in Python. It is not important or expected that we understand the code in detail.

The code will produce something like this:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter5.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/testing-jupyter5.png
https://github.com/workshop-material/classification-task

label

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12
y

0 1

−12 −8 −4 0 4 8 12
x

−12 −8 −4 0 4 8 12
x

false
true

correct

Are predictions correct? (accuracy: 0.94)

label

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

y

0 1

−12 −8 −4 0 4 8 12
x

−12 −8 −4 0 4 8 12
x

0
1

label

Training data

The bottom row shows the training data (two labels) and the top row shows the test data and
whether the nearest-neighbor predictor classified their labels correctly.

The big picture of the code is as follows:

We can choose the number of samples (the example above has 50 samples).
The code will generate samples with two labels (0 and 1) in a 2D space.
One of the labels has a normal distribution and a circular distribution with some minimum
and maximum radius.
The second label only has a circular distribution with a different radius.
Then we try to predict whether the test samples belong to label 0 or 1 based on the
nearest neighbors in the training data. The number of neighbors can be adjusted and the
code will take label of the majority of the neighbors.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/chart.svg
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/chart.svg

Example run

Instructor note

The instructor demonstrates running the code on their computer.

The code is written to accept command-line arguments to specify the number of samples
and file names. Later we will discuss advantages of this approach.

Let us try to get the help text:

We first generate the training and test data:

In a second step we generate predictions for the test data:

Finally, we can plot the results:

$ python generate_data.py --help

Usage: generate_data.py [OPTIONS]

 Program that generates a set of training and test samples for a non-linear
 classification task.

Options:
 --num-samples INTEGER Number of samples for each class. [required]
 --training-data TEXT Training data is written to this file. [required]
 --test-data TEXT Test data is written to this file. [required]
 --help Show this message and exit.

$ python generate_data.py --num-samples 50 --training-data train.csv --test-data
test.csv

Generated 50 training samples (train.csv) and test samples (test.csv).

$ python generate_predictions.py --num-neighbors 7 --training-data train.csv --test-
data test.csv --predictions predictions.csv

Predictions saved to predictions.csv

$ python plot_results.py --training-data train.csv --predictions predictions.csv --
output-chart chart.svg

Accuracy: 0.94
Saved chart to chart.svg

Discussion and goals

💬 Discussion

Together we look at the generated files (train.csv, test.csv, predictions.csv, chart.svg).
We browse and discuss the example code behind these scripts.

 Learning goals

What are the most important steps to make this code reusable by others and our
future selves?
Be able to apply these techniques to your own code/script.

We will not focus on …

… how the code works internally in detail.
… whether this is the most efficient algorithm.
… whether the code is numerically stable.
… how to code scales with system size.
… whether it is portable to other operating systems (we will discuss this later).

Introduction to version control with Git and GitHub

Motivation

 Objectives

Browse commits and branches of a Git repository.
Remember that commits are like snapshots of the repository at a certain point in time.
Know the difference between Git (something that tracks changes) and GitHub/GitLab
(a web platform to host Git repositories).

Why do we need to keep track of versions?

Version control is an answer to the following questions (do you recognize some of them?):

“It broke … hopefully I have a working version somewhere?”
“Can you please send me the latest version?”
“Where is the latest version?”
“Which version are you using?”
“Which version have the authors used in the paper I am trying to reproduce?”
“Found a bug! Since when was it there?”
“I am sure it used to work. When did it change?”
“My laptop is gone. Is my thesis now gone?”

https://github.com/workshop-material/classification-task

Demonstration

Example repository: https://github.com/workshop-material/classification-task
Commits are like snapshots and if we break something we can go back to a previous
snapshot.
Commits carry metadata about changes: author, date, commit message, and a checksum.
Branches are like parallel universes where you can experiment with changes without
affecting the default branch: https://github.com/workshop-material/classification-
task/network (“Insights” -> “Network”)
With version control we can annotate code (example).
Collaboration: We can fork (make a copy on GitHub), clone (make a copy to our
computer), review, compare, share, and discuss.
Code review: Others can suggest changes using pull requests or merge requests. These
can be reviewed and discussed before they are merged. Conceptually, they are similar to
“suggesting changes” in Google Docs.

Features: roll-back, branching, merging, collaboration

Roll-back: you can always go back to a previous version and compare
Branching and merging:

Work on different ideas at the same time
You can experiment with an idea and discard it if it turns out to be a bad idea
Different people can work on the same code/project without interfering

Image created using https://gopherize.me/ (inspiration).

https://github.com/workshop-material/classification-task
https://github.com/workshop-material/classification-task/network
https://github.com/workshop-material/classification-task/network
https://github.com/workshop-material/classification-tas/blame/main/generate_predictions.py
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960

Collaboration: review, compare, share, discuss
Example network graph

Talking about code

Which of these two is more practical?

1. “Clone the code, go to the file ‘generate_predictions.py’, and search for ‘majority_index’.
Oh! But make sure you use the version from January 2025.”

2. Or I can send you a permalink: https://github.com/workshop-material/classification-
task/blob/79ce3be8/generate_predictions.py#L25-L28

What we typically like to snapshot

Software (this is how it started but Git/GitHub can track a lot more)
Scripts
Documents (plain text files much better suitable than Word documents)
Manuscripts (Git is great for collaborating/sharing LaTeX or Quarto manuscripts)
Configuration files
Website sources
Data

💬 Discussion

In this example somebody tried to keep track of versions without a version control system
tool like Git. Discuss the following directory listing. What possible problems do you
anticipate with this kind of “version control”:

✔︎Solution

Giving a version to a collaborator and merging changes later with own changes
sounds like lots of work.
What if you discover a bug and want to know since when the bug existed?

Forking, cloning, and browsing

myproject-2019.zip
myproject-2020-february.zip
myproject-2021-august.zip
myproject-2023-09-19-working.zip
myproject-2023-09-21.zip
myproject-2023-09-21-test.zip
myproject-2023-09-21-myversion.zip
myproject-2023-09-21-newfeature.zip
...
(100 more files like these)

https://github.com/workshop-material/classification-task/network
https://github.com/workshop-material/classification-task/blob/79ce3be8/generate_predictions.py#L25-L28
https://github.com/workshop-material/classification-task/blob/79ce3be8/generate_predictions.py#L25-L28
https://quarto.org/

In this episode, we will look at an existing repository to understand how all the pieces work
together. Along the way, we will make a copy (by forking and/or cloning) of the repository for
us, which will be used for our own changes.

 Objectives

See a real Git repository and understand what is inside of it.
Understand how version control allows advanced inspection of a repository.
See how Git allows multiple people to work on the same project at the same time.
See the big picture instead of remembering a bunch of commands.

GitHub, VS Code, or command line

We offer three different paths for this exercise:

GitHub (this is the one we will demonstrate)
VS Code (if you prefer to follow along using an editor)
Command line (for people comfortable with the command line)

Creating a copy of the repository by “forking” or “cloning”

A repository is a collection of files in one directory tracked by Git. A GitHub repository is
GitHub’s copy, which adds things like access control, issue tracking, and discussions. Each
GitHub repository is owned by a user or organization, who controls access.

First, we need to make our own copy of the exercise repository. This will become important
later, when we make our own changes.

Illustration of forking a repository on GitHub.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/fork.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/fork.png

Illustration of cloning a repository to your computer.

It is also possible to do this: to clone a forked repository to your computer.

At all times you should be aware of if you are looking at your repository or the upstream
repository (original repository):

Your repository: https://github.com/USER/classification-task
Upstream repository: https://github.com/workshop-material/classification-task

 How to create a fork

1. Go to the repository view on GitHub: https://github.com/workshop-
material/classification-task

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/clone.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/clone.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/clone-of-fork.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/clone-of-fork.png
https://github.com/workshop-material/classification-task
https://github.com/workshop-material/classification-task

2. First, on GitHub, click the button that says “Fork”. It is towards the top-right of the
screen.

3. You should shortly be redirected to your copy of the repository USER/classification-
task.

Instructor note

Before starting the exercise session show how to fork the repository to own account
(above).

Exercise: Copy and browse an existing project

Work on this by yourself or in pairs.

⚙ Exercise preparation

✍️ Exercise: Browsing an existing project (20 min)

Browse the example project and explore commits and branches, either on a fork or on a
clone. Take notes and prepare questions. The hints are for the GitHub path in the
browser.

1. Browse the commit history: Are commit messages understandable? (Hint: “Commit
history”, the timeline symbol, above the file list)

2. Compare the commit history with the network graph (“Insights” -> “Network”). Can
you find the branches?

3. Try to find the history of commits for a single file, e.g. generate_predictions.py . (Hint:
“History” button in the file view)

4. Which files include the word “training”? (Hint: the GitHub search on top of the
repository view)

5. In the generate_predictions.py file, find out who modified the evaluation of
“majority_index” last and in which commit. (Hint: “Blame” view in the file view)

GitHub VS Code Command line

In this case you will work on a fork.

You only need to open your own view, as described above. The browser URL should
look like https://github.com/USER/classification-task, where USER is your GitHub
username.

https://github.com/workshop-material/classification-task

6. Can you use this code yourself? Are you allowed to share modifications? (Hint: look
for a license file)

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.
Solution and walk-through

(1) Basic browsing

The most basic thing to look at is the history of commits.

This is visible from a button in the repository view. We see every change, when, and who
has committed.
Every change has a unique identifier, such as 79ce3be . This can be used to identify both
this change, and the whole project’s version as of that change.
Clicking on a change in the view shows more.

GitHub VS Code Command line

Click on the timeline symbol in the repository view:

(2) Compare commit history with network graph

The commit history we saw above looks linear: one commit after another. But if we look at
the network view, we see some branching and merging points. We’ll see how to do these
later. This is another one of the basic Git views.

GitHub VS Code Command line

In a new browser tab, open the “Insights” tab, and click on “Network”. You can hover
over the commit dots to see the person who committed and how they correspond with
the commits in the other view:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/history.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/history.png

(3) How can you browse the history of a single file?

We see the history for the whole repository, but we can also see it for a single file.

(4) Which files include the word “training”?

Version control makes it very easy to find all occurrences of a word or pattern. This is useful
for things like finding where functions or variables are defined or used.

GitHub VS Code Command line

Navigate to the file view: Main page → generate_predictions.py. Click the “History”
button near the top right.

GitHub VS Code Command line

We go to the main file view. We click the Search magnifying class at the very top, type
“training”, and click enter. We see every instance, including the context.

 Searching in a forked repository will not work instantaneously!

It usually takes a few minutes before one can search for keywords in a forked
repository since it first needs to build the search index the very first time we search.
Start it, continue with other steps, then come back to this.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/network.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/network.png

(5) Who modified a particular line last and when?

This is called the “annotate” or “blame” view. The name “blame” is very unfortunate, but it is
the standard term for historical reasons for this functionality and it is not meant to blame
anyone.

(6) Can you use this code yourself? Are you allowed to share modifications?

Look at the file LICENSE .
On GitHub, click on the file to see a nice summary of what we can do with this:

Summary

Git allowed us to understand this simple project much better than we could, if it was just
a few files on our own computer.
It was easy to share the project with the course.
By forking the repository, we created our own copy. This is important for the following,
where we will make changes to our copy.

Creating branches and commits

The first and most basic task to do in Git is record changes using commits. In this part, we
will record changes in two ways: on a new branch (which supports multiple lines of work at
once), and directly on the “main” branch (which happens to be the default branch here).

 Objectives

Record new changes to our own copy of the project.
Understand adding changes in two separate branches.
See how to compare different versions or branches.

GitHub VS Code Command line

From a file view, change preview to “Blame” towards the top-left. To get the actual
commit, click on the commit message next to the code line that you are interested in.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/license.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/license.png

Background

In the previous episode we have browsed an existing repository and saw commits and
branches.
Each commit is a snapshot of the entire project at a certain point in time and has a unique
identifier (hash) .
A branch is a line of development, and the main branch or master branch are often the
default branch in Git.
A branch in Git is like a sticky note that is attached to a commit. When we add new
commits to a branch, the sticky note moves to the new commit.
Tags are a way to mark a specific commit as important, for example a release version.
They are also like a sticky note, but they don’t move when new commits are added.

What if two people, at the same time, make two different changes? Git can merge them together
easily. Image created using https://gopherize.me/ (inspiration).

Exercise: Creating branches and commits

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/gophers.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/gophers.png
https://gopherize.me/
https://twitter.com/jay_gee/status/703360688618536960

Illustration of what we want to achieve in this exercise.

✍️ Exercise: Practice creating commits and branches (20 min)

1. First create a new branch and then either add a new file or modify an existing file and
commit the change. Make sure that you now work on your copy of the example
repository. In your new commit you can share a Git or programming trick you like or
improve the documentation.

2. In a new commit, modify the file again.
3. Switch to the main branch and create a commit there.
4. Browse the network and locate the commits that you just created (“Insights” ->

“Network”).
5. Compare the branch that you created with the main branch. Can you find an easy

way to see the differences?
6. Can you find a way to compare versions between two arbitrary commits in the

repository?
7. Try to rename the branch that you created and then browse the network again.
8. Try to create a tag for one of the commits that you created (on GitHub, create a

“release”).
9. Optional: If this was too easy, you can try to create a new branch and on this branch

work on one of these new features:
The random seed is now set to a specific number (42). Make it possible to set the
seed to another number or to turn off the seed setting via the command line
interface.
Move the code that does the majority vote to an own function.
Write a test for the new majority vote function.
The num_neighbors in the code needs to be odd. Change the code so that it stops
with an error message if an even number is given.
Add type annotations to some functions.
When calling the scatter_plot function, call the function with named arguments.
Add example usage to README.md.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/branches.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/branches.png

Add a Jupyter Notebook version of the example code.

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.
Solution and walk-through

(1) Create a new branch and a new commit

(2) Modify the file again with a new commit

(3) Switch to the main branch and create a commit there

GitHub VS Code Command line

1. Where it says “main” at the top left, click, enter a new branch name (e.g. new-
tutorial), then click on “Create branch … from main”.

2. Make sure you are still on the new-tutorial branch (it should say it at the top), and
click “Add file” → “Create new file” from the upper right.

3. Enter a filename where it says “Name your file…”.
4. Share some Git or programming trick you like.
5. Click “Commit changes”
6. Enter a commit message. Then click “Commit changes”.

You should appear back at the file browser view, and see your modification there.

GitHub VS Code Command line

This is similar to before, but we click on the existing file to modify.

1. Click on the file you added or modified previously.
2. Click the edit button, the pencil icon at top-right.
3. Follow the “Commit changes” instructions as in the previous step.

GitHub VS Code Command line

1. Go back to the main repository page (your user’s page).
2. In the branch switch view (top left above the file view), switch to main .

(4) Browse the commits you just made

Let’s look at what we did. Now, the main and the new branches have diverged: both have
some modifications. Try to find the commits you created.

(5) Compare the branches

Comparing changes is an important thing we need to do. When using the GitHub view only,
this may not be so common, but we’ll show it so that it makes sense later on.

(6) Compare two arbitrary commits

This is similar to above, but not only between branches.

(7) Renaming a branch

3. Modify another file that already exists, following the pattern from above.

GitHub VS Code Command line

Insights tab → Network view (just like we have done before).

GitHub VS Code Command line

A nice way to compare branches is to add /compare to the URL of the repository, for
example (replace USER): https://github.com/USER/classification-task/compare

GitHub VS Code Command line

Following the /compare -trick above, one can compare commits on GitHub by adjusting
the following URL: https://github.com/USER/classification-
task/compare/VERSION1..VERSION2

Replace USER with your username and VERSION1 and VERSION2 with a commit hash or
branch name. Please try it out.

(8) Creating a tag

Tags are a way to mark a specific commit as important, for example a release version. They
are also like a sticky note, but they don’t move when new commits are added.

Summary

In this part, we saw how we can make changes to our files. With branches, we can track
several lines of work at once, and can compare their differences.

You could commit directly to main if there is only one single line of work and it’s only
you.
You could commit to branches if there are multiple lines of work at once, and you don’t
want them to interfere with each other.
Tags are useful to mark a specific commit as important, for example a release version.
In Git, commits form a so-called “graph”. Branches are tags in Git function like sticky
notes that stick to specific commits. What this means for us is that it does not cost any
significant disk space to create new branches.
Not all files should be added to Git. For example, temporary files or files with sensitive
information or files which are generated as part of the build process should not be added
to Git. For this we use .gitignore (more about this later: Practical advice: How much Git
is necessary?).
Unsure on which branch you are or what state the repository is in? On the command line,
use git status frequently to get a quick overview.

Merging changes and contributing to the project

Git allows us to have different development lines where we can try things out. It also allows
different people to work on the same project at the same. This means that we have to
somehow combine the changes later. In this part we will practice this: merging.

GitHub VS Code Command line

Branch button → View all branches → three dots at right side → Rename branch.

GitHub VS Code Command line

On the right side, below “Releases”, click on “Create a new release”.

What GitHub calls releases are actually tags in Git with additional metadata. For the
purpose of this exercise we can use them interchangeably.

 Objectives

Understand that on GitHub merging is done through a pull request (on GitLab: “merge
request”). Think of it as a change proposal.
Create and merge a pull request within your own repository.
Understand (and optionally) do the same across repositories, to contribute to the
upstream public repository.

Exercise

Illustration of what we want to achieve in this exercise.

✍️ Exercise: Merging branches

GitHub Local (VS Code, Command line)

First, we make something called a pull request, which allows review and commenting
before the actual merge.

We assume that in the previous exercise you have created a new branch with one or
few new commits. We provide basic hints. You should refer to the solution as
needed.

1. Navigate to your branch from the previous episode (hint: the same branch view
we used last time).

2. Begin the pull request process (hint: There is a “Contribute” button in the branch
view).

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/merging.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/merging.png

The solution below goes over most of the answers, and you are encouraged to use it when
the hints aren’t enough - this is by design.
Solution and walk-through

(1) Navigate to your branch

Before making the pull request, or doing a merge, it’s important to make sure that you are on
the right branch. Many people have been frustrated because they forgot this!

3. Add or modify the pull request title and description, and verify the other data. In
the pull request verify the target repository and the target branch. Make sure that
you are merging within your own repository. GitHub: By default, it will offer to
make the change to the upstream repository, workshop-material . You should
change this, you shouldn’t contribute your commit(s) upstream yet. Where it says
base repository , select your own repository.

4. Create the pull request by clicking “Create pull request”. Browse the network
view to see if anything has changed yet.

5. Merge the pull request, or if you are not on GitHub you can merge the branch
locally. Browse the network again. What has changed?

6. Find out which branches are merged and thus safe to delete. Then remove them
and verify that the commits are still there, only the branch labels are gone (hint:
you can delete branches that have been merged into main).

7. Optional: Try to create a new branch with a new change, then open a pull request
but towards the original (upstream) repository. We will later merge few of those.

GitHub VS Code Command line

GitHub will notice a recently changed branch and offer to make a pull request (clicking
there will bring you to step 3):

(2) Begin the pull request process

In GitHub, the pull request is the way we propose to merge two branches together. We start
the process of making one.

If the yellow box is not there, make sure you are on the branch you want to merge from:

GitHub VS Code Command line

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-compare-and-pr.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-compare-and-pr.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-navigate-to-branch.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-navigate-to-branch.png

(3) Fill out and verify the pull request

Check that the pull request is directed to the right repository and branch and that it contains
the changes that you meant to merge.

GitHub VS Code Command line

Things to check:

Base repository: this should be your own
Title: make it descriptive
Description: make it informative
Scroll down to see commits: are these the ones you want to merge?
Scroll down to see the changes: are these the ones you want to merge?

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-contribute.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-contribute.png

(4) Create the pull request

We actually create the pull request. Don’t forget to navigate to the Network view after
opening the pull request. Note that the changes proposed in the pull request are not yet
merged.

(5) Merge the pull request

Now, we do the actual merging. We see some effects now.

This screenshot only shows the top part. If you scroll down, you can see the commits and
the changes. We recommend to do this before clicking on “Create pull request”.

GitHub VS Code Command line

Click on the green button “Create pull request”.

If you click on the little arrow next to “Create pull request”, you can also see the option
to “Create draft pull request”. This will be interesting later when collaborating with
others. It allows you to open a pull request that is not ready to be merged yet, but you
want to show it to others and get feedback.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-comparing-changes.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-comparing-changes.png

(6) Delete merged branches

Before deleting branches, first check whether they are merged.

If you delete an un-merged branch, it will be difficult to find the commits that were on that
branch. If you delete a merged branch, the commits are now also part of the branch where
we have merged to.

GitHub VS Code Command line

Review it again (commits and changes), and then click “Merge pull request”.

After merging, verify the network view. Also navigate then to your “main” branch and
check that your change is there.

GitHub VS Code Command line

One way to delete the branch is to click on the “Delete branch” button after the pull
request is merged:

But what if we forgot? Then navigate to the branch view:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-merged.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-merged.png

(7) Contribute to the original repository with a pull request

This is an advanced step. We will practice this tomorrow and it is OK to skip this at this
stage.

Summary

We learned how to merge two branches together.
When is this useful? This is not only useful to combine development lines in your own
work. Being able to merge branches also forms the basis for collaboration.
Branches which are merged to other branches are safe to delete, since we only delete the
“sticky note” next to a commit, not the commits themselves.

Conflict resolution

Resolving a conflict (demonstration)

In the overview we can see that it has been merged and we can delete it.

GitHub VS Code Command line

Now that you know how to create branches and opening a pull request, try to open a
new pull request with a new change but this time the base repository should be the
upstream one.

In other words, you now send a pull request across repositories: from your fork to the
original repository.

Another thing that is different now is that you might not have permissions to merge the
pull request. We can then together review and browse the pull request.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-branches.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/github-branches.png

A conflict is when Git asks humans to decide during a merge which of two changes to keep if
the same portion of a file has been changed in two different ways on two different
branches.

We will practice conflict resolution in the collaborative Git lesson (next day).

Here we will only demonstrate how to create a conflict and how to resolve it, all on GitHub.
Once we understand how this works, we will be more confident to resolve conflicts also in
the command line (we can demonstrate this if we have time).

How to create a conflict (please try this in your own time and just watch now):

Create a new branch from main and on it make a change to a file.
On main , make a different change to the same part of the same file.
Now try to merge the new branch to main . You will get a conflict.

How to resolve conflicts:

On GitHub, you can resolve conflicts by clicking on the “Resolve conflicts” button. This
will open a text editor where you can choose which changes to keep. Make sure to
remove the conflict markers. After resolving the conflict, you can commit the changes and
merge the pull request.
Sometimes a conflict is between your change and somebody else’s change. In that case,
you might have to discuss with the other person which changes to keep.

Avoiding conflicts

💬 The human side of conflicts

What does it mean if two people do the same thing in two different ways?
What if you work on the same file but do two different things in the different
sections?
What if you do something, don’t tell someone from 6 months, and then try to combine
it with other people’s work?
How are conflicts avoided in other work? (Only one person working at once?
Declaring what you are doing before you start, if there is any chance someone else
might do the same thing, helps.)

Human measures
Think and plan to which branch you will commit to.
Do not put unrelated changes on the same branch.

Collaboration measures
Open an issue and discuss with collaborators before starting a long-living branch.

Project layout measures
Modifying global data often causes conflicts.
Modular programming reduces this risk.

Technical measures
Share your changes early and often: This is one of the happy, rare circumstances
when everyone doing the selfish thing (publishing your changes as early as practical)
results in best case for everyone!
Pull/rebase often to keep up to date with upstream.
Resolve conflicts early.

Practical advice: How much Git is necessary?

Writing useful commit messages

Useful commit messages summarize the change and provide context.

If you need a commit message that is longer than one line, then the convention is: one line
summarizing the commit, then one empty line, then paragraph(s) with more details in free
form, if necessary.

Good example:

Why something was changed is more important than what has changed.
Cross-reference to issues and discussions if possible/relevant.
Bad commit messages: “fix”, “oops”, “save work”
Just for fun, a page collecting bad examples: http://whatthecommit.com
Write commit messages that will be understood 15 years from now by someone else than
you. Or by your future you.
Many projects start out as projects “just for me” and end up to be successful projects
that are developed by 50 people over decades.
Commits with multiple authors are possible.

Good references:

“My favourite Git commit”
“On commit messages”
“How to Write a Git Commit Message”

 Note

increase alpha to 2.0 for faster convergence

the motivation for this change is
to enable ...
...
(more context)
...
this is based on a discussion in #123

http://whatthecommit.com/
https://help.github.com/articles/creating-a-commit-with-multiple-authors/
https://fatbusinessman.com/2019/my-favourite-git-commit
https://who-t.blogspot.com/2009/12/on-commit-messages.html
https://chris.beams.io/posts/git-commit/

A great way to learn how to write commit messages and to get inspired by their style
choices: browse repositories of codes that you use/like:

Some examples (but there are so many good examples):

SciPy
NumPy
Pandas
Julia
ggplot2, compare with their release notes
Flask, compare with their release notes

When designing commit message styles consider also these:

How will you easily generate a changelog or release notes?
During code review, you can help each other improving commit messages.

But remember: it is better to make any commit, than no commit. Especially in small projects.
Let not the perfect be the enemy of the good enough.
What level of branching complexity is necessary for each project?

Simple personal projects:

Typically start with just the main branch.
Use branches for unfinished/untested ideas.
Use branches when you are not sure about a change.
Use tags to mark important milestones.
If you are unsure what to do with unfinished and not working code, commit it to a
branch.

Projects with few persons: you accept things breaking sometimes

It might be reasonable to commit to the main branch and feature branches.

Projects with few persons: changes are reviewed by others

You create new feature branches for changes.
Changes are reviewed before they are merged to the main branch.
Consider to write-protect the main branch so that it can only be changed with pull
requests or merge requests.

How large should a commit be?

Better too small than too large (easier to combine than to split).

https://github.com/scipy/scipy/commits/main
https://github.com/numpy/numpy/commits/main
https://github.com/pandas-dev/pandas/commits/main
https://github.com/JuliaLang/julia/commits/master
https://github.com/tidyverse/ggplot2/commits/main
https://github.com/tidyverse/ggplot2/releases
https://github.com/pallets/flask/commits/main
https://github.com/pallets/flask/blob/main/CHANGES.rst

Often I make a commit at the end of the day (this is a unit I would not like to lose).
Smaller sized commits may be easier to review for others than huge commits.
A commit should not contain unrelated changes to simplify review and possible
repair/adjustments/undo later (but again: imperfect commits are better than no commits).
Imperfect commits are better than no commits.

Working on the command line? Use “git status” all the time

The git status command is one of the most useful commands in Git to inform about which
branch we are on, what we are about to commit, which files might not be tracked, etc.

How about staging and committing?

Commit early and often: rather create too many commits than too few. You can always
combine commits later.
Once you commit, it is very, very hard to really lose your code.
Always fully commit (or stash) before you do dangerous things, so that you know you are
safe. Otherwise it can be hard to recover.
Later you can start using the staging area (where you first stage and then commit in a
second step).
Later start using git add -p and/or git commit -p .

What to avoid

Committing generated files/directories (example: __pycache__ , *.pyc) -> use .gitignore
files (collection of .gitignore templates).
Committing huge files -> use code review to detect this.
Committing unrelated changes together.
Postponing commits because the changes are “unfinished”/”ugly” -> better ugly commits
than no commits.
When working with branches:

Working on unrelated things on the same branch.
Not updating your branch before starting new work.
Too ambitious branch which risks to never get completed.
Over-engineering the branch layout and safeguards in small projects -> can turn
people away from your project.

Optional: How to turn your project to a Git repo and share it

 Objectives

Turn our own coding project (small or large, finished or unfinished) into a Git
repository.
Be able to share a repository on the web to have a backup or so that others can reuse
and collaborate or even just find it.

Exercise

https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
https://github.com/github/gitignore

From a bunch of files to a local repository which we then share on GitHub.

✍️ Exercise: Turn your project to a Git repo and share it (20 min)

1. Create a new directory called myproject (or a different name) with one or few files in
it. This represents our own project. It is not yet a Git repository. You can try that with
your own project or use a simple placeholder example.

2. Turn this new directory into a Git repository.
3. Share this repository on GitHub (or GitLab, since it really works the same).

We offer three different paths of how to do this exercise.

Via GitHub web interface: easy and can be a good starting point if you are completely
new to Git.
VS Code is quite easy, since VS Code can offer to create the GitHub repositories for
you.
Command line: you need to create the repository on GitHub and link it yourself.

Only using GitHub VS Code Command line RStudio

Create an repository on GitHub

First log into GitHub, then follow the screenshots and descriptions below.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/sharing.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/sharing.png

Click on the “plus” symbol on top right, then on “New repository”.

Then:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/new-repository.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/new-repository.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/create-repository-with-readme.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/create-repository-with-readme.png

Is putting software on GitHub/GitLab/… publishing?

It is a good first step but to make your code truly findable and accessible, consider making
your code citable and persistent: Get a persistent identifier (PID) such as DOI in addition to
sharing the code publicly, by using services like Zenodo or similar services.

More about this in How to publish your code.
Where to start with documentation

 Objectives

Discuss what makes good documentation.
Improve the README of your project or our example project.
Explore Sphinx which is a popular tool to build documentation websites.
Learn how to leverage GitHub Actions and GitHub Pages to build and deploy
documentation.

Instructor note

(30 min) Discussion
(30 min) Exercise: Set up a Sphinx documentation and add API documentation
(15 min) Demo: Building documentation with GitHub Actions

Why? 💗✉️ to your future self

Choose a repository name, add a short description, and in this case make sure to check
“Add a README file”. Finally “Create repository”.

Upload your files

Now that the repository is created, you can upload your files:

Click on the “+” symbol and then on “Upload files”.

https://zenodo.org/
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/upload-files.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/upload-files.png

You will probably use your code in the future and may forget details.
You may want others to use your code or contribute (almost impossible without
documentation).

In-code documentation

Not very useful (more commentary than comment):

More useful (explaining why):

Keeping zombie code “just in case” (rather use version control):

Emulating version control:

Many languages allow “docstrings”

Example (Python):

now we check if temperature is below -50
if temperature < -50:
 print("ERROR: temperature is too low")

we regard temperatures below -50 degrees as measurement errors
if temperature < -50:
 print("ERROR: temperature is too low")

do not run this code!
if temperature > 0:
print("It is warm")

John Doe: threshold changed from 0 to 15 on August 5, 2013
if temperature > 15:
 print("It is warm")

 Keypoints

Documentation which is only in the source code is not enough.
Often a README is enough.
Documentation needs to be kept in the same Git repository as the code since we
want it to evolve with the code.

Often a README is enough - checklist

Purpose
Requirements
Installation instructions
Copy-paste-able example to get started
Tutorials covering key functionality
Reference documentation (e.g. API) covering all functionality
Authors and recommended citation
License
Contribution guide

See also the JOSS review checklist.

Diátaxis

Diátaxis is a systematic approach to technical documentation authoring.

Overview: https://diataxis.fr/
How to use Diátaxis as a guide to work: https://diataxis.fr/how-to-use-diataxis/

What if you need more than a README?

def kelvin_to_celsius(temp_k: float) -> float:
 """
 Converts temperature in Kelvin to Celsius.

 Parameters

 temp_k : float
 temperature in Kelvin

 Returns

 temp_c : float
 temperature in Celsius
 """
 assert temp_k >= 0.0, "ERROR: negative T_K"

 temp_c = temp_k - 273.15

 return temp_c

https://joss.readthedocs.io/en/latest/review_checklist.html
https://diataxis.fr/
https://diataxis.fr/how-to-use-diataxis/

Write documentation in Markdown (.md) or reStructuredText (.rst) or R Markdown (.Rmd)
In the same repository as the code -> version control and reproducibility
Use one of many tools to build HTML out of md/rst/Rmd: Sphinx, MkDocs, Zola, Jekyll,
Hugo, RStudio, knitr, bookdown, blogdown, …
Deploy the generated HTML to GitHub Pages or GitLab Pages

Exercise: Set up a Sphinx documentation

⚙ Preparation

In this episode we will use the following 5 packages which we installed previously as part
of the Software install instructions:

Which repository to use? You have 3 options:

Clone your fork of the example repository.
If you don’t have that, you can clone the exercise repository itself.
You can try this with your own project and the project does not have to be a Python
project.

There are at least two ways to get started with Sphinx:

1. Use sphinx-quickstart to create a new Sphinx project.
2. This is what we will do instead: Create three files (doc/conf.py , doc/index.md , and

doc/about.md) as starting point and improve from there.

✍️ Exercise: Set up a Sphinx documentation

1. Create the following three files in your project:

This is conf.py :

myst-parser
sphinx
sphinx-rtd-theme
sphinx-autoapi
sphinx-autobuild

your-project/
├── doc/
│ ├── conf.py
│ ├── index.md
│ └── about.md
└── ...

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/ReStructuredText
https://rmarkdown.rstudio.com/
https://sphinx-doc.org/
https://www.mkdocs.org/
https://www.getzola.org/
https://jekyllrb.com/
https://gohugo.io/
https://yihui.org/knitr/
https://bookdown.org/
https://bookdown.org/yihui/blogdown/
https://pages.github.com/
https://docs.gitlab.com/ee/user/project/pages/

This is index.md (feel free to change the example text):

This is about.md (feel free to adjust):

2. Run sphinx-build to build the HTML documentation:

3. Try to open _build/index.html in your browser.
4. Experiment with adding more content, images, equations, code blocks, …

typography

project = "your-project"
copyright = "2025, Authors"
author = "Authors"
release = "0.1"

exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]

extensions = [
 "myst_parser", # in order to use markdown
]

myst_enable_extensions = [
 "colon_fence", # ::: can be used instead of ``` for better rendering
]

html_theme = "sphinx_rtd_theme"

Our code documentation

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

:::{toctree}
:maxdepth: 2
:caption: Some caption

about.md
:::

About this code

Work in progress ...

$ sphinx-build doc _build

... lots of output ...
The HTML pages are in _build.

https://myst-parser.readthedocs.io/en/latest/syntax/typography.html

images
math and equations
code blocks

There is a lot more you can do:

This is useful if you want to check the integrity of all internal and external links:

sphinx-autobuild provides a local web server that will automatically refresh your view
every time you save a file - which makes writing with live-preview much easier.

Demo: Building documentation with GitHub Actions

Instructor note

Instructor presents.
Learners are encouraged to try this later on their own.

First we need to extend the environment.yml file to include the necessary packages:

Then we add a GitHub Actions workflow .github/workflow/sphinx.yml to build the
documentation:

$ sphinx-build doc -W -b linkcheck _build

name: classification-task
channels:
 - conda-forge
dependencies:
 - python <= 3.12
 - click
 - numpy
 - pandas
 - scipy
 - altair
 - vl-convert-python
 - myst-parser
 - sphinx
 - sphinx-rtd-theme
 - sphinx-autoapi

https://myst-parser.readthedocs.io/en/latest/syntax/images_and_figures.html
https://myst-parser.readthedocs.io/en/latest/syntax/math.html
https://myst-parser.readthedocs.io/en/latest/syntax/code_and_apis.html
https://pypi.org/project/sphinx-autobuild/

Now:

Add these two changes to the GitHub repository.
Go to “Settings” -> “Pages” -> “Branch” -> gh-pages -> “Save”.
Look at “Actions” tab and observe the workflow running and hopefully deploying the
website.
Finally visit the generated site. You can find it by clicking the About wheel icon on top
right of your repository. There, select “Use your GitHub Pages website”.
This is how we build almost all of our lesson websites, including this one!
Another popular place to deploy Sphinx documentation is ReadTheDocs.

Optional: How to auto-generate API documentation in Python

name: Build documentation

on:
 push:
 branches: [main]
 pull_request:
 branches: [main]

permissions:
 contents: write

jobs:
 docs:
 runs-on: ubuntu-24.04

 steps:
 - name: Checkout
 uses: actions/checkout@v4

 - uses: mamba-org/setup-micromamba@v1
 with:
 micromamba-version: '2.0.5-0' # any version from https://github.com/mamba-
org/micromamba-releases
 environment-file: environment.yml
 init-shell: bash
 cache-environment: true
 post-cleanup: 'all'
 generate-run-shell: false

 - name: Sphinx build
 run: |
 sphinx-build doc _build
 shell: bash -el {0}

 - name: Deploy to GitHub Pages
 uses: peaceiris/actions-gh-pages@v4
 if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
 with:
 publish_branch: gh-pages
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: _build/
 force_orphan: true

https://readthedocs.org/

Add three tiny modifications (highlighted) to doc/conf.py to auto-generate API
documentation (this requires the sphinx-autoapi package):

Then rebuild the documentation (or push the changes and let GitHub rebuild it) and you
should see a new section “API Reference”.
Possibilities to host Sphinx documentation

Build with GitHub Actions and deploy to GitHub Pages.
Build with GitLab CI/CD and deploy to GitLab Pages.
Build with Read the Docs and host there.

Confused about reStructuredText vs. Markdown vs. MyST?

At the beginning there was reStructuredText and Sphinx was built for reStructuredText.
Independently, Markdown was invented and evolved into a couple of flavors.
Markdown became more and more popular but was limited compared to
reStructuredText.
Later, MyST was invented to be able to write something that looks like Markdown but in
addition can do everything that reStructuredText can do with extra directives.

Where to read more

CodeRefinery documentation lesson
Sphinx documentation
Sphinx + ReadTheDocs guide
For more Markdown functionality, see the Markdown guide.

project = "your-project"
copyright = "2025, Authors"
author = "Authors"
release = "0.1"

exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]

extensions = [
 "myst_parser", # in order to use markdown
 "autoapi.extension", # in order to use markdown
]

search this directory for Python files
autoapi_dirs = [".."]

ignore this file when generating API documentation
autoapi_ignore = ["*/conf.py"]

myst_enable_extensions = [
 "colon_fence", # ::: can be used instead of ``` for better rendering
]

html_theme = "sphinx_rtd_theme"

https://github.com/features/actions
https://pages.github.com/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/pages/
https://about.readthedocs.com/
https://myst-parser.readthedocs.io/en/latest/syntax/typography.html
https://coderefinery.github.io/documentation/
https://www.sphinx-doc.org/
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/index.html
https://www.markdownguide.org/basic-syntax/

For Sphinx additions, see Sphinx Markup Constructs.
An opinionated guide on documentation in Python

Collaborative version control and code review

Concepts around collaboration

 Objectives

Be able to decide whether to divide work at the branch level or at the repository level.

Commits, branches, repositories, forks, clones

repository: The project, contains all data and history (commits, branches, tags).
commit: Snapshot of the project, gets a unique identifier (e.g.
c7f0e8bfc718be04525847fc7ac237f470add76e).

branch: Independent development line. The main development line is often called main .
tag: A pointer to one commit, to be able to refer to it later. Like a commemorative plaque
that you attach to a particular commit (e.g. phd-printed or paper-submitted).
cloning: Copying the whole repository to your laptop - the first time. It is not necessary to
download each file one by one.
forking: Taking a copy of a repository (which is typically not yours) - your copy (fork) stays
on GitHub/GitLab and you can make changes to your copy.

Cloning a repository

In order to make a complete copy a whole repository, the git clone command can be used.
When cloning, all the files, of all or selected branches, of a repository are copied in one
operation. Cloning of a repository is of relevance in a few different situations:

Working on your own, cloning is the operation that you can use to create multiple
instances of a repository on, for instance, a personal computer, a server, and a
supercomputer.
The parent repository could be a repository that you or your colleague own. A common
use case for cloning is when working together within a smaller team where everyone has
read and write access to the same git repository.
Alternatively, cloning can be made from a public repository of a code that you would like
to use. Perhaps you have no intention to work on the code, but would like to stay in tune
with the latest developments, also in-between releases of new versions of the code.

https://www.sphinx-doc.org/en/master/markup/index.html
https://docs.python-guide.org/writing/documentation/
https://en.wikipedia.org/wiki/Commemorative_plaque

Forking and cloning
Forking a repository

When a fork is made on GitHub/GitLab a complete copy, of all or selected branches, of the
repository is made. The copy will reside under a different account on GitHub/GitLab. Forking
of a repository is of high relevance when working with a git repository to which you do not
have write access.

In the fork repository commits can be made to the base branch (main or master), and to
other branches.
The commits that are made within the branches of the fork repository can be contributed
back to the parent repository by means of pull or merge requests.

Synchronizing changes between repositories

We need a mechanism to communicate changes between the repositories.
We will pull or fetch updates from remote repositories (we will soon discuss the
difference between pull and fetch).
We will push updates to remote repositories.
We will learn how to suggest changes within repositories on GitHub and across
repositories (pull request).
Repositories that are forked or cloned do not automatically synchronize themselves: We
will learn how to update forks (by pulling from the “central” repository).

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/forkandclone.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/forkandclone.png

A main difference between cloning a repository and forking a repository is that the former
is a general operation for generating copies of a repository to different computers,
whereas forking is a particular operation implemented on GitHub/GitLab.

Collaborating within the same repository

In this episode, we will learn how to collaborate within the same repository. We will learn
how to cross-reference issues and pull requests, how to review pull requests, and how to use
draft pull requests.

This exercise will form a good basis for collaboration that is suitable for most research
groups.

 Note

When you read or hear pull request, please think of a change proposal.

Exercise

In this exercise, we will contribute to a repository via a pull request. This means that you
propose some change, and then it is accepted (or not).

⚙ Exercise preparation

First we need to get access to the exercise repository to which we will contribute.

Instructor collects GitHub usernames from learners and adds them as
collaborators to the exercise repository (Settings -> Collaborators and teams ->
Manage access -> Add people).

Don’t forget to accept the invitation

Check https://github.com/settings/organizations/
Alternatively check the inbox for the email account you registered with GitHub.
GitHub emails you an invitation link, but if you don’t receive it you can go to your
GitHub notifications in the top right corner. The maintainer can also “copy invite
link” and share it within the group.

Watching and unwatching repositories

Now that you are a collaborator, you get notified about new issues and pull
requests via email.
If you do not wish this, you can “unwatch” a repository (top of the project page).
However, we recommend watching repositories you are interested in. You can
learn things from experts just by watching the activity that come through a
popular project.

https://github.com/workshop-material/recipe-book
https://github.com/settings/organizations/

Unwatch a repository by clicking “Unwatch” in the repository view, then “Participating and
@mentions” - this way, you will get notifications about your own interactions.

✍️ Exercise: Collaborating within the same repository (25 min)

Technical requirements (from installation instructions):

If you create the commits locally: Being able to authenticate to GitHub

What is familiar from the previous workshop day (not repeated here):

Cloning a repository.
Creating a branch.
Committing a change on the new branch.
Submit a pull request towards the main branch.

What will be new in this exercise:

If you create the changes locally, you will need to push them to the remote repository.
Learning what a protected branch is and how to modify a protected branch: using a
pull request.
Cross-referencing issues and pull requests.
Practice to review a pull request.
Learn about the value of draft pull requests.

Exercise tasks:

1. Start in the exercise repository and open an issue where you describe the change you
want to make. Note down the issue number since you will need it later.

2. Create a new branch.

https://coderefinery.github.io/installation/ssh/
https://github.com/workshop-material/recipe-book

3. Make a change to the recipe book on the new branch and in the commit cross-
reference the issue you opened (see the walk-through below for how to do that).

4. Push your new branch (with the new commit) to the repository you are working on.
5. Open a pull request towards the main branch.
6. Review somebody else’s pull request and give constructive feedback. Merge their pull

request.
7. Try to create a new branch with some half-finished work and open a draft pull request.

Verify that the draft pull request cannot be merged since it is not meant to be merged
yet.

Solution and hints

(1) Opening an issue

This is done through the GitHub web interface. For example, you could give the name of the
recipe you want to add (so that others don’t add the same one). It is the “Issues” tab.

(2) Create a new branch.

If on GitHub, you can make the branch in the web interface.

(3) Make a change adding the recipe

Add a new file with the recipe in it. Commit the file. In the commit message, include the note
about the issue number, saying that this will close that issue.

Cross-referencing issues and pull requests

Each issue and each pull request gets a number and you can cross-reference them.

When you open an issue, note down the issue number (in this case it is #2):

You can reference this issue number in a commit message or in a pull request, like in this
commit message:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/issue-number.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/issue-number.png

If you forget to do that in your commit message, you can also reference the issue in the pull
request description. And instead of fixes you can also use closes or resolves or fix or
close or resolve (case insensitive).

Here are all the keywords that GitHub recognizes:
https://help.github.com/en/articles/closing-issues-using-keywords

Then observe what happens in the issue once your commit gets merged: it will automatically
close the issue and create a link between the issue and the commit. This is very useful for
tracking what changes were made in response to which issue and to know from when until
when precisely the issue was open.
(4) Push to GitHub as a new branch

Push the branch to the repository. You should end up with a branch visible in the GitHub
web view.

This is only necessary if you created the changes locally. If you created the changes directly
on GitHub, you can skip this step.

this is the new recipe; fixes #2

VS Code Command line

In VS Code, you can “publish the branch” to the remote repository by clicking the cloud
icon in the bottom left corner of the window:

https://help.github.com/en/articles/closing-issues-using-keywords
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/vscode-publish-branch.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/vscode-publish-branch.png

(5) Open a pull request towards the main branch

This is done through the GitHub web interface.

(6) Reviewing pull requests

You review through the GitHub web interface.

Checklist for reviewing a pull request:

Be kind, on the other side is a human who has put effort into this.
Be constructive: if you see a problem, suggest a solution.
Towards which branch is this directed?
Is the title descriptive?
Is the description informative?
Scroll down to see commits.
Scroll down to see the changes.
If you get incredibly many changes, also consider the license or copyright and ask where
all that code is coming from.
Again, be kind and constructive.
Later we will learn how to suggest changes directly in the pull request.

If someone is new, it’s often nice to say something encouraging in the comments before
merging (even if it’s just “thanks”). If all is good and there’s not much else to say, you could
merge directly.

(7) Draft pull requests

Try to create a draft pull request:

Verify that the draft pull request cannot be merged until it is marked as ready for review:

Draft pull requests can be useful for:

Feedback: You can open a pull request early to get feedback on your work without
signaling that it is ready to merge.
Information: They can help communicating to others that a change is coming up and in
progress.

What is a protected branch? And how to modify it?

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/draft-pr.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/draft-pr-wip.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/draft-pr-wip.png

A protected branch on GitHub or GitLab is a branch that cannot (accidentally) deleted or
force-pushed to. It is also possible to require that a branch cannot be directly pushed to or
modified, but that changes must be submitted via a pull request.

To protect a branch in your own repository, go to “Settings” -> “Branches”.
Summary

We used all the same pieces that we’ve learned previously.
But we successfully contributed to a collaborative project!
The pull request allowed us to contribute without changing directly: this is very good
when it’s not mainly our project.

Practicing code review

In this episode we will practice the code review process. We will learn how to ask for
changes in a pull request, how to suggest a change in a pull request, and how to modify a pull
request.

This will enable research groups to work more collaboratively and to not only improve the
code quality but also to learn from each other.

Exercise

⚙ Exercise preparation

We can continue in the same exercise repository which we have used in the previous
episode.

✍️ Exercise: Practicing code review (25 min)

Technical requirements:

If you create the commits locally: Being able to authenticate to GitHub

What is familiar from previous lessons:

Creating a branch.
Committing a change on the new branch.
Opening and merging pull requests.

What will be new in this exercise:

As a reviewer, we will learn how to ask for changes in a pull request.
As a reviewer, we will learn how to suggest a change in a pull request.
As a submitter, we will learn how to modify a pull request without closing the
incomplete one and opening a new one.

https://coderefinery.github.io/installation/ssh/

Exercise tasks:

1. Create a new branch and one or few commits: in these improve something but also
deliberately introduce a typo and also a larger mistake which we will want to fix
during the code review.

2. Open a pull request towards the main branch.
3. As a reviewer to somebody else’s pull request, ask for an improvement and also

directly suggest a change for the small typo. (Hint: suggestions are possible through
the GitHub web interface, view of a pull request, “Files changed” view, after selecting
some lines. Look for the “±” button.)

4. As the submitter, learn how to accept the suggested change. (Hint: GitHub web
interface, “Files Changed” view.)

5. As the submitter, improve the pull request without having to close and open a new
one: by adding a new commit to the same branch. (Hint: push to the branch again.)

6. Once the changes are addressed, merge the pull request.

Help and discussion

From here on out, we don’t give detailed steps to the solution. You need to combine what you
know, and the extra info below, in order to solve the above.

How to ask for changes in a pull request

Technically, there are at least two common ways to ask for changes in a pull request.

Either in the comment field of the pull request:

Or by using the “Review changes”:

And always please be kind and constructive in your comments. Remember that the goal is not
gate-keeping but collaborative learning.
How to suggest a change in a pull request as a reviewer

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/comment.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/comment.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/files-changed.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/files-changed.png

If you see a very small problem that is easy to fix, you can suggest a change as a reviewer.

Instead of asking the submitter to tiny problem, you can suggest a change by clicking on the
plus sign next to the line number in the “Files changed” tab:

Here you can comment on specific lines or even line ranges.

But now the interesting part is to click on the “Add a suggestion” symbol (the one that looks
like plus and minus). Now you can fix the tiny problem (in this case a typo) and then click on
the “Add single comment” button:

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/leave-comment.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/leave-comment.png

The result is this and the submitter can accept the change with a single click:

After accepting with “Commit suggestion”, the improvement gets added to the pull request.
How to modify a pull request to address the review comments

If the reviewer asks for changes, it is not necessary to close the pull request and later open a
new one. It can even be counter-productive to do so: This can fragment the discussion and
the history of the pull request and can make it harder to understand the context of the
changes.

A much better mechanism is to recognize that pull requests are not implemented from a
specific commit to a specific branch, but always from a branch to a branch.

This means that you can make amendments to the pull request by adding new commits to the
same source branch. This way the pull request will be updated automatically and the
reviewer can see the new changes and comment on them.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/add-suggestion.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/commit-suggestion.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/commit-suggestion.png

The fact that pull requests are from branch to branch also strongly suggests that it is a good
practice to create a new branch for each pull request. Otherwise you could accidentally
modify an open pull request by adding new commits to the source branch.
Summary

Our process isn’t just about code now. It’s about discussion and working together to
make the whole process better.
GitHub (or GitLab) discussions and reviewing are quite powerful and can make small
changes easy.

How to contribute changes to repositories that belong to others

In this episode we prepare you to suggest and contribute changes to repositories that belong
to others. These might be open source projects that you use in your work.

We will see how Git and services like GitHub or GitLab can be used to suggest modification
without having to ask for write access to the repository and accept modifications without
having to grant write access to others.

Exercise

⚙ Exercise preparation

The exercise repository is now different: https://github.com/workshop-
material/recipe-book-forking-exercise (note the -forking-exercise).
First fork the exercise repository to your GitHub account.
Then clone your fork to your computer (if you wish to work locally).
Double-check that you have forked the correct repository.

✍️ Exercise: Collaborating within the same repository (25 min)

Technical requirements:

If you create the commits locally: Being able to authenticate to GitHub

What is familiar from previous lessons:

Forking a repository.
Creating a branch.
Committing a change on the new branch.
Opening and merging pull requests.

What will be new in this exercise:

Opening a pull request towards the upstream repository.
Pull requests can be coupled with automated testing.

https://github.com/workshop-material/recipe-book-forking-exercise
https://github.com/workshop-material/recipe-book-forking-exercise
https://coderefinery.github.io/installation/ssh/

Learning that your fork can get out of date.
After the pull requests are merged, updating your fork with the changes.
Learn how to approach other people’s repositories with ideas, changes, and requests.

Exercise tasks:

1. Open an issue in the upstream exercise repository where you describe the change you
want to make. Take note of the issue number.

2. Create a new branch in your fork of the repository.
3. Make a change to the recipe book on the new branch and in the commit cross-

reference the issue you opened. See the walk-through below for how to do this.
4. Open a pull request towards the upstream repository.
5. The instructor will review and merge the pull requests. During the review, pay

attention to the automated test step (here for demonstration purposes, we test
whether the recipe contains an ingredients and an instructions sections).

6. After few pull requests are merged, update your fork with the changes.
7. Check that in your fork you can see changes from other people’s pull requests.

Help and discussion

Help! I don’t have permissions to push my local changes

Maybe you see an error like this one:

Or like this one:

In this case you probably try to push the changes not to your fork but to the original
repository and in this exercise you do not have write access to the original repository.

The simpler solution is to clone again but this time your fork.

✔︎Recovery

But if you want to keep your local changes, you can change the remote URL to point to
your fork. Check where your remote points to with git remote --verbose .

It should look like this (replace USER with your GitHub username):

Please make sure you have the correct access rights
and the repository exists.

failed to push some refs to workshop-material/recipe-book-forking-exercise.git

It should not look like this:

In this case you can adjust “origin” to point to your fork with:

Opening a pull request towards the upstream repository

We have learned in the previous episode that pull requests are always from branch to
branch. But the branch can be in a different repository.

When you open a pull request in a fork, by default GitHub will suggest to direct it towards
the default branch of the upstream repository.

This can be changed and it should always be verified, but in this case this is exactly what we
want to do, from fork towards upstream:

Pull requests can be coupled with automated testing

We added an automated test here just for fun and so that you see that this is possible to do.

In this exercise, the test is silly. It will check whether the recipe contains both an ingredients
and an instructions section.

In this example the test failed:

$ git remote --verbose

origin git@github.com:USER/recipe-book-forking-exercise.git (fetch)
origin git@github.com:USER/recipe-book-forking-exercise.git (push)

$ git remote --verbose

origin git@github.com:workshop-material/recipe-book-forking-exercise.git (fetch)
origin git@github.com:workshop-material/recipe-book-forking-exercise.git (push)

$ git remote set-url origin git@github.com:USER/recipe-book-forking-exercise.git

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/pull-request-form.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/pull-request-form.png

Click on the “Details” link to see the details of the failed test:

How can this be useful?

The project can define what kind of tests are expected to pass before a pull request can
be merged.
The reviewer can see the results of the tests, without having to run them locally.

How does it work?

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/all-checks-failed.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/check-details.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/check-details.png

We added a GitHub Actions workflow to automatically run on each push or pull request
towards the main branch.

What tests or steps can you image for your project to run automatically with each pull
request?
How to update your fork with changes from upstream

This used to be difficult but now it is two mouse clicks.

Navigate to your fork and notice how GitHub tells you that your fork is behind. In my case, it
is 9 commits behind upstream. To fix this, click on “Sync fork” and then “Update branch”:

After the update my “branch is up to date” with the upstream repository:

How to approach other people’s repositories with ideas, changes, and requests

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/sync-fork.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/fork-after-update.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/fork-after-update.png

Contributing very minor changes

Clone or fork+clone repository
Create a branch
Commit and push change
Open a pull request or merge request

If you observe an issue and have an idea how to fix it

Open an issue in the repository you wish to contribute to
Describe the problem
If you have a suggestion on how to fix it, describe your suggestion
Possibly discuss and get feedback
If you are working on the fix, indicate it in the issue so that others know that somebody is
working on it and who is working on it
Submit your fix as pull request or merge request which references/closes the issue

Motivation

Inform others about an observed problem
Make it clear whether this issue is up for grabs or already being worked on

If you have an idea for a new feature

Open an issue in the repository you wish to contribute to
In the issue, write a short proposal for your suggested change or new feature
Motivate why and how you wish to do this
Also indicate where you are unsure and where you would like feedback
Discuss and get feedback before you code
Once you start coding, indicate that you are working on it
Once you are done, submit your new feature as pull request or merge request which
references/closes the issue/proposal

Motivation

Get agreement and feedback before writing 5000 lines of code which might be
rejected
If we later wonder why something was done, we have the issue/proposal as reference
and can read up on the reasoning behind a code change

Summary

This forking workflow lets you propose changes to repositories for which you have no
write access.
This is the way that much modern open-source software works.
You can now contribute to any project you can view.

Reproducible environments and dependencies

 Objectives

There are not many codes that have no dependencies. How should we deal with
dependencies?
We will focus on installing and managing dependencies in Python when using
packages from PyPI and Conda.
We will not discuss how to distribute your code as a package.

[This episode borrows from https://coderefinery.github.io/reproducible-python/reusable/ and
https://aaltoscicomp.github.io/python-for-scicomp/dependencies/]

Essential XKCD comics:

xkcd - dependency
xkcd - superfund

How to avoid: “It works on my machine 🤷”

Use a standard way to list dependencies in your project:

Python: requirements.txt or environment.yml
R: DESCRIPTION or renv.lock
Rust: Cargo.lock
Julia: Project.toml
C/C++/Fortran: CMakeLists.txt or Makefile or spack.yaml or the module system on
clusters or containers
Other languages: …

Two ecosystems: PyPI (The Python Package Index) and Conda

 PyPI

Installation tool: pip or uv or similar
Traditionally used for Python-only packages or for Python interfaces to external
libraries. There are also packages that have bundled external libraries (such as numpy).
Pros:

Easy to use
Package creation is easy

Cons:
Installing packages that need external libraries can be complicated

 Conda

https://coderefinery.github.io/reproducible-python/reusable/
https://aaltoscicomp.github.io/python-for-scicomp/dependencies/
https://xkcd.com/2347/
https://xkcd.com/1987/

Installation tool: conda or mamba or similar
Aims to be a more general package distribution tool and it tries to provide not only the
Python packages, but also libraries and tools needed by the Python packages.
Pros:

Quite easy to use
Easier to manage packages that need external libraries
Not only for Python

Cons:
Package creation is harder

Conda ecosystem explained

Anaconda is a distribution of conda packages made by Anaconda Inc. When using
Anaconda remember to check that your situation abides with their licensing terms (see
below).
Anaconda has recently changed its licensing terms, which affects its use in a professional
setting. This caused uproar among academia and Anaconda modified their position in this
article.

Main points of the article are:

conda (installation tool) and community channels (e.g. conda-forge) are free to use.
Anaconda repository and Anaconda’s channels in the community repository are free
for universities and companies with fewer than 200 employees. Non-university
research institutions and national laboratories need licenses.
Miniconda is free, when it does not download Anaconda’s packages.
Miniforge is not related to Anaconda, so it is free.

For ease of use on sharing environment files, we recommend using Miniforge to create
the environments and using conda-forge as the main channel that provides software.

Major repositories/channels:

Anaconda Repository houses Anaconda’s own proprietary software channels.
Anaconda’s proprietary channels: main , r , msys2 and anaconda . These are
sometimes called defaults .
conda-forge is the largest open source community channel. It has over 28k packages
that include open-source versions of packages in Anaconda’s channels.

Tools and distributions for dependency management in Python

Poetry: Dependency management and packaging.
Pipenv: Dependency management, alternative to Poetry.
pyenv: If you need different Python versions for different projects.
virtualenv: Tool to create isolated Python environments for PyPI packages.
micropipenv: Lightweight tool to “rule them all”.
Conda: Package manager for Python and other languages maintained by Anaconda Inc.

https://www.anaconda.com/
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://www.anaconda.com/blog/update-on-anacondas-terms-of-service-for-academia-and-research
https://repo.anaconda.com/
https://conda-forge.org/
https://python-poetry.org/
https://pipenv.pypa.io/
https://github.com/pyenv/pyenv
https://docs.python.org/3/library/venv.html
https://github.com/thoth-station/micropipenv
https://docs.conda.io/

Miniconda: A “miniature” version of conda, maintained by Anaconda Inc. By default uses
Anaconda’s channels. Check licensing terms when using these packages.
Mamba: A drop in replacement for conda. It used be much faster than conda due to better
dependency solver but nowadays conda also uses the same solver. It still has some UI
improvements.
Micromamba: Tiny version of the Mamba package manager.
Miniforge: Open-source Miniconda alternative with conda-forge as the default channel
and optionally mamba as the default installer.
Pixi: Modern, super fast tool which can manage conda environments.
uv: Modern, super fast replacement for pip, poetry, pyenv, and virtualenv. You can also
switch between Python versions.

Best practice: Install dependencies into isolated environments

For each project, create a separate environment.
Don’t install dependencies globally for all projects. Sooner or later, different projects will
have conflicting dependencies.
Install them from a file which documents them at the same time Install dependencies by
first recording them in requirements.txt or environment.yml and install using these files,
then you have a trace (we will practice this later below).

 Keypoints

If somebody asks you what dependencies you have in your project, you should be able to
answer this question with a file.

In Python, the two most common ways to do this are:

requirements.txt (for pip and virtual environments)
environment.yml (for conda and similar)

You can export (“freeze”) the dependencies from your current environment into these
files:

How to communicate the dependencies as part of a report/thesis/publication

inside a conda environment
$ conda env export --from-history > environment.yml

inside a virtual environment
$ pip freeze > requirements.txt

https://docs.anaconda.com/miniconda/
https://mamba.readthedocs.io/
https://conda.org/blog/2023-11-06-conda-23-10-0-release/
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://github.com/conda-forge/miniforge
https://pixi.sh/
https://docs.astral.sh/uv/

Each notebook or script or project which depends on libraries should come with either a
requirements.txt or a environment.yml , unless you are creating and distributing this project

as Python package.

Attach a requirements.txt or a environment.yml to your thesis.
Even better: Put requirements.txt or a environment.yml in your Git repository along
your code.
Even better: Also binderize your analysis pipeline.

Containers

A container is like an operating system inside a file.
“Building a container”: Container definition file (recipe) -> Container image
This can be used with Apptainer/ SingularityCE.

Containers offer the following advantages:

Reproducibility: The same software environment can be recreated on different
computers. They force you to know and document all your dependencies.
Portability: The same software environment can be run on different computers.
Isolation: The software environment is isolated from the host system.
“Time travel”:

You can run old/unmaintained software on new systems.
Code that needs new dependencies which are not available on old systems can still be
run on old systems.

How to install dependencies into environments

Now we understand a bit better why and how we installed dependencies for this course in
the Software install instructions.

We have used Miniforge and the long command we have used was:

This command did two things:

Create a new environment with name “course” (specified by -n).
Installed all dependencies listed in the environment.yml file (specified by -f), which we
fetched directly from the web. Here you can browse it.

For your own projects:

$ mamba env create -n course -f
https://raw.githubusercontent.com/coderefinery/reproducible-python-
ml/main/software/environment.yml

https://mybinder.org/
https://apptainer.org/
https://sylabs.io/singularity/
https://github.com/coderefinery/reproducible-python-ml/blob/main/software/environment.yml

1. Start by writing an environment.yml of requirements.txt file. They look like this:

2. Then set up an isolated environment and install the dependencies from the file into it:

environment.yml requirements.txt

name: course
channels:
 - conda-forge
 - bioconda
dependencies:
 - python <= 3.12
 - click
 - numpy
 - pandas
 - scipy
 - altair
 - vl-convert-python
 - jupyterlab
 - pytest
 - scalene
 - flit
 - ruff
 - icecream
 - snakemake-minimal
 - myst-parser
 - sphinx
 - sphinx-rtd-theme
 - sphinx-autoapi
 - sphinx-autobuild
 - black
 - isort
 - pip
 - pip:
 - jupyterlab-code-formatter

Miniforge Pixi Virtual environment uv

Create a new environment with name “myenv” from environment.yml :

Or equivalently:

$ conda env create -n myenv -f environment.yml

$ mamba env create -n myenv -f environment.yml

Updating environments

What if you forgot a dependency? Or during the development of your project you realize
that you need a new dependency? Or you don’t need some dependency anymore?

1. Modify the environment.yml or requirements.txt file.
2. Either remove your environment and create a new one, or update the existing one:

Pinning package versions

Let us look at the environment.yml which we used to set up the environment for this course.
Dependencies are listed without version numbers. Should we pin the versions?

Both pip and conda ecosystems and all the tools that we have mentioned support
pinning versions.
It is possible to define a range of versions instead of precise versions.
While your project is still in progress, I often use latest versions and do not pin them.
When publishing the script or notebook, it is a good idea to pin the versions to ensure
that the code can be run in the future.

Activate the environment:

Run your code inside the activated virtual environment.

$ conda activate myenv

$ python example.py

Miniforge Pixi Virtual environment uv

Update the environment by running:

Or equivalently:

$ conda env update --file environment.yml

$ mamba env update --file environment.yml

https://github.com/coderefinery/reproducible-python-ml/blob/main/software/environment.yml

Remember that at some point in time you will face a situation where newer versions of
the dependencies are no longer compatible with your software. At this point you’ll have
to update your software to use the newer versions or to lock it into a place in time.

Managing dependencies on a supercomputer

Additional challenges:
Storage quotas: Do not install dependencies in your home directory. A conda
environment can easily contain 100k files.
Network file systems struggle with many small files. Conda environments often
contain many small files.

Possible solutions:
Try Pixi (modern take on managing Conda environments) and uv (modern take on
managing virtual environments). Blog post: Using Pixi and uv on a supercomputer
Install your environment on the fly into a scratch directory on local disk (not the
network file system).
Install your environment on the fly into a RAM disk/drive.
Containerize your environment into a container image.

 Keypoints

Being able to communicate your dependencies is not only nice for others, but also for
your future self or the next PhD student or post-doc.
If you ask somebody to help you with your code, they will ask you for the
dependencies.

Notebooks and version control

 Objectives

Demonstrate two tools which make version control of notebooks easier.

[this episode is adapted after https://coderefinery.github.io/jupyter/version-control/]

Jupyter Notebooks are stored in JSON format. With this format it can be a bit difficult to
compare and merge changes which are introduced through the notebook interface.

Packages and JupyterLab extensions to simplify version control

Several packages and JupyterLab extensions have been developed to make it easier to
interact with Git and GitHub:

nbdime (notebook “diff” and “merge”) provides “content-aware” diffing and merging.
Adds a Git button to the notebook interface.

https://pixi.sh/
https://docs.astral.sh/uv/
https://research-software.uit.no/blog/2025-pixi-and-uv/
https://coderefinery.github.io/jupyter/version-control/
https://en.wikipedia.org/wiki/JSON
http://nbdime.readthedocs.io/

git diff and git merge shell commands can use nbdime’s diff and merge for
notebook files, but leave Git’s behavior unchanged for non-notebook files.

jupyterlab-git is a JupyterLab extension for version control using Git.
Adds a Git tab to the left-side menu bar for version control inside JupyterLab.

JupyterLab GitHub is a JupyterLab extension for accessing GitHub repositories.
Adds a GitHub tab to the left-side menu bar where you can browse and open
notebooks from your GitHub repositories.

All three extensions can be used from within the JupyterLab interface and our Conda
environment provides jupyterlab-git and nbdime. To install additional extensions, please
consult the official documentation about installing and managing JupyterLab extensions.

Comparing Jupyter Notebooks on GitHub

For this you really want to enable Rich Jupyter Notebook Diffs on GitHub:

On GitHub click on your avatar/image (top right).
Click on “Feature preview”.
Enable “Rich Jupyter Notebook Diffs”.

✍️ Demonstration

We can demonstrate this with a notebook that contains a Matplotlib plot
(unfortunately the demonstration is less convincing with an Altair plot since the latter
is generated on the fly and not stored as an image).
We place the notebook in a GitHub repository and make a small change to it.
We use https://github.com/USER/REPO/compare/VERSION1..VERSION2 to compare
the two versions of the notebook, once with “Rich Jupyter Notebook Diffs” enabled,
and once without.

Other useful tooling for notebooks

Code formatting

https://jupyterlab-code-formatter.readthedocs.io/

https://github.com/jupyterlab/jupyterlab-git
https://www.npmjs.com/package/@jupyterlab/github
https://coderefinery.github.io/installation/conda-environment/
https://coderefinery.github.io/installation/conda-environment/
https://github.com/jupyterlab/jupyterlab-git
http://nbdime.readthedocs.io/
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://github.blog/changelog/2023-03-01-feature-preview-rich-jupyter-notebook-diffs/
https://jupyterlab-code-formatter.readthedocs.io/

We need three additional packages to format code in JupyterLab: jupyterlab-code-formatter ,
black , and isort .

This button will format the code in all cells of the notebook.

Instructor note

We test it out together on an example notebook.

Sharing notebooks

 Objectives

Know about good practices for notebooks to make them reusable
Have a recipe to share a dynamic and reproducible visualization pipeline

[this lesson is adapted after https://coderefinery.github.io/jupyter/sharing/]

https://coderefinery.github.io/jupyter/sharing/

Document dependencies

If you import libraries into your notebook, note down their versions. Document the
dependencies as discussed in section Reproducible environments and dependencies.
Place either environment.yml or requirements.txt in the same folder as the notebook(s).
If you publish the notebook as part of a publication, it is probably a good idea to pin the
versions of the libraries you use.
This is not only useful for people who will try to rerun this in future, it is also understood
by some tools (e.g. Binder) which we will see later.

Different ways to share a notebook

We need to learn how to share notebooks. At the minimum we need to share them with our
future selves (backup and reproducibility).

You can enter a URL, GitHub repo or username, or GIST ID in nbviewer and view a
rendered Jupyter notebook
Read the Docs can render Jupyter Notebooks via the nbsphinx package
Binder creates live notebooks based on a GitHub repository
EGI Notebooks (see also https://egi-notebooks.readthedocs.io)
JupyterLab supports sharing and collaborative editing of notebooks via Google Drive.
Recently it also added support for Shared editing with collaborative notebook model.
JupyterLite creates a Jupyterlab environment in the browser and can be hosted as a
GitHub page.
Notedown, Jupinx and DocOnce can take Markdown or Sphinx files and generate Jupyter
Notebooks
Voilà allows you to convert a Jupyter Notebook into an interactive dashboard
The jupyter nbconvert tool can convert a (.ipynb) notebook file to:

python code (.py file)
an HTML file
a LaTeX file
a PDF file
a slide-show in the browser

The following platforms can be used free of charge but have paid subscriptions for faster
access to cloud resources:

CoCalc (formerly SageMathCloud) allows collaborative editing of notebooks in the cloud
Google Colab lets you work on notebooks in the cloud, and you can read and write to
notebook files on Drive
Microsoft Azure Notebooks also offers free notebooks in the cloud
Deepnote allows real-time collaboration

Sharing dynamic notebooks using Binder

https://mybinder.org/
https://nbviewer.jupyter.org/
https://nbsphinx.readthedocs.io/
https://mybinder.org/
https://notebooks.egi.eu/
https://egi-notebooks.readthedocs.io/
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyterlab/pull/10118
https://jupyterlite.readthedocs.io/en/latest/
https://github.com/aaren/notedown
https://github.com/QuantEcon/sphinxcontrib-jupyter
https://github.com/hplgit/doconce
https://voila.readthedocs.io/en/stable/
https://cocalc.com/
https://colab.research.google.com/
https://colab.research.google.com/notebooks/io.ipynb
https://colab.research.google.com/notebooks/io.ipynb
https://notebooks.azure.com/
https://deepnote.com/
https://mybinder.org/

✍️ Exercise/demo: Making your notebooks reproducible by anyone (15 min)

Instructor demonstrates this:

First we look at the statically rendered version of the example notebook on GitHub
and also nbviewer.
Visit https://mybinder.org:

Check that your notebook repository now has a “launch binder” badge in your
README.md file on GitHub.

Try clicking the button and see how your repository is launched on Binder (can take a
minute or two). Your notebooks can now be explored and executed in the cloud.
Enjoy being fully reproducible!

How to get a digital object identifier (DOI)

Zenodo is a great service to get a DOI for a notebook (but first practice with the Zenodo
sandbox).
Binder can also run notebooks from Zenodo.
In the supporting information of your paper you can refer to its DOI.

Tools and useful practices

 Objectives

How does good Python code look like? And if we only had 30 minutes, which good
practices should we highlight?
Some of the points are inspired by the excellent Effective Python book by Brett
Slatkin.

Follow the PEP 8 style guide

https://github.com/workshop-material/classification-task/blob/main/example.ipynb
https://nbviewer.jupyter.org/
https://mybinder.org/
https://zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://sandbox.zenodo.org/
https://sandbox.zenodo.org/
https://mybinder.org/
https://effectivepython.com/

Please browse the PEP 8 style guide so that you are familiar with the most important
rules.
Using a consistent style makes your code easier to read and understand for others.
You don’t have to check and adjust your code manually. There are tools that can do this
for you (see below).

Linting and static type checking

A linter is a tool that analyzes source code to detect potential errors, unused imports, unused
variables, code style violations, and to improve readability.

Popular linters:
Autoflake
Flake8
Pyflakes
Pycodestyle
Pylint
Ruff

We recommend Ruff since it can do both checking and formatting and you don’t have to
switch between multiple tools.

💬 Linters and formatters can be configured to your liking

These tools typically have good defaults. But if you don’t like the defaults, you can
configure what they should ignore or how they should format or not format.

This code example (which we possibly recognize from the previous section about Profiling)
has few problems (highlighted):

Please try whether you can locate these problems using Ruff:

import re
import requests

def count_unique_words(file_path: str) -> int:
 unique_words = set()
 forgotten_variable = 13
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower()))
 for word in words:
 unique_words.add(word)
 return len(unique_words)

$ ruff check

https://pep8.org/
https://pypi.org/project/autoflake/
https://flake8.pycqa.org/
https://pypi.org/project/pyflakes/
https://pycodestyle.pycqa.org/
https://pylint.readthedocs.io/
https://docs.astral.sh/ruff/
https://docs.astral.sh/ruff/

If you use version control and like to have your code checked or formatted before you
commit the change, you can use tools like pre-commit.

Many editors can be configured to automatically check your code as you type. Ruff can also
be used as a language server.
Use an auto-formatter

Ruff is one of the best tools to automatically format your code according to a consistent
style.

To demonstrate how it works, let us try to auto-format a code example which is badly
formatted and also difficult to read:

Other popular formatters:

Black
YAPF

Many editors can be configured to automatically format for you when you save the file.

It is possible to automatically format your code in Jupyter notebooks! For this to work you
need the following three dependencies installed:

Badly formatted Auto-formatted

import re
def count_unique_words (file_path : str)->int:
 unique_words=set()
 with open(file_path,"r",encoding="utf-8") as file:
 for line in file:
 words=re.findall(r"\b\w+\b",line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

jupyterlab-code-formatter
black
isort

https://pre-commit.com/
https://docs.astral.sh/ruff/
https://black.readthedocs.io/
https://github.com/google/yapf

More information and a screen-cast of how this works can be found at https://jupyterlab-
code-formatter.readthedocs.io/.
Consider annotating your functions with type hints

Compare these two versions of the same function and discuss how the type hints can help
you and the Python interpreter to understand the function better:

A (static) type checker is a tool that checks whether the types of variables in your code
match the types that you have specified. Popular tools:

Mypy
Pyright (Microsoft)
Pyre (Meta)

Consider using AI-assisted coding

We can use AI as an assistant/apprentice:

Code completion
Write a test based on an implementation
Write an implementation based on a test

Or we can use AI as a mentor:

Explain a concept
Improve code
Show a different (possibly better) way of implementing the same thing

Without type hints With type hints

def count_unique_words(file_path):
 unique_words = set()
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

https://jupyterlab-code-formatter.readthedocs.io/
https://jupyterlab-code-formatter.readthedocs.io/
https://mypy.readthedocs.io/
https://github.com/microsoft/pyright
https://pyre-check.org/

Example for using a chat-based AI tool.

Example for using AI to complete code in an editor.

 AI tools open up a box of questions which are beyond our scope here

Legal
Ethical
Privacy
Lock-in/ monopolies
Lack of diversity

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/chatgpt.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/code-completion.gif
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/code-completion.gif

Will we still need to learn programming?
How will it affect learning and teaching programming?

Debugging with print statements

Print-debugging is a simple, effective, and popular way to debug your code like this:

Or more elaborate:

But there can be better alternatives:

Logging module

IceCream offers compact helper functions for print-debugging

Often you can avoid using indices

Especially people coming to Python from other languages tend to use indices where they are
not needed. Indices can be error-prone (off-by-one errors and reading/writing past the end of
the collection).

Iterating

print(f"file_path: {file_path}")

print(f"I am in function count_unique_words and the value of file_path is {file_path}")

import logging

logging.basicConfig(level=logging.DEBUG)

logging.debug("This is a debug message")
logging.info("This is an info message")

from icecream import ic

ic(file_path)

Verbose and can be brittle Better

https://docs.python.org/3/library/logging.html
https://github.com/gruns/icecream

Enumerate if you need the index

Zip if you need to iterate over two collections

Unpacking

Prefer catch-all unpacking over indexing/slicing

scores = [13, 5, 2, 3, 4, 3]

for i in range(len(scores)):
 print(scores[i])

Verbose and can be brittle Better

particle_masses = [7.0, 2.2, 1.4, 8.1, 0.9]

for i in range(len(particle_masses)):
 print(f"Particle {i} has mass {particle_masses[i]}")

Using an index can be brittle Better

persons = ["Alice", "Bob", "Charlie", "David", "Eve"]
favorite_ice_creams = ["vanilla", "chocolate", "strawberry", "mint", "chocolate"]

for i in range(len(persons)):
 print(f"{persons[i]} likes {favorite_ice_creams[i]} ice cream")

Verbose and can be brittle Better

coordinates = (0.1, 0.2, 0.3)

x = coordinates[0]
y = coordinates[1]
z = coordinates[2]

List comprehensions, map, and filter instead of loops

Know your collections

Verbose and can be brittle Better

scores = [13, 5, 2, 3, 4, 3]

sorted_scores = sorted(scores)

smallest = sorted_scores[0]
rest = sorted_scores[1:-1]
largest = sorted_scores[-1]

print(smallest, rest, largest)
Output: 2 [3, 3, 4, 5] 13

For-loop List comprehension Map

string_numbers = ["1", "2", "3", "4", "5"]

integer_numbers = []
for element in string_numbers:
 integer_numbers.append(int(element))

print(integer_numbers)
Output: [1, 2, 3, 4, 5]

For-loop List comprehension Filter

def is_even(number: int) -> bool:
 return number % 2 == 0

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = []
for number in numbers:
 if is_even(number):
 even_numbers.append(number)

print(even_numbers)
Output: [2, 4, 6]

How to choose the right collection type:

Ordered and modifiable: list
Fixed and (rather) immutable: tuple
Key-value pairs: dict
Dictionary with default values: defaultdict from collections
Members are unique, no duplicates: set
Optimized operations at both ends: deque from collections
Cyclical iteration: cycle from itertools
Adding/removing elements in the middle: Create a linked list (e.g. using a dictionary or a
dataclass)
Priority queue: heapq library
Search in sorted collections: bisect library

What to avoid:

Need to add/remove elements at the beginning or in the middle? Don’t use a list.
Need to make sure that elements are unique? Don’t use a list.

Making functions more ergonomic

Less error-prone API functions and fewer backwards-incompatible changes by enforcing
keyword-only arguments:

Use dataclasses or named tuples or dictionaries instead of too many input or output
arguments.
Docstrings instead of comments:

Consider using DeprecationWarning from the warnings module for deprecating functions
or arguments.

Iterating

def send_message(*, message: str, recipient: str) -> None:
 print(f"Sending to {recipient}: {message}")

def send_message(*, message: str, recipient: str) -> None:
 """
 Sends a message to a recipient.

 Parameters:
 - message (str): The content of the message.
 - recipient (str): The name of the person receiving the message.
 """
 print(f"Sending to {recipient}: {message}")

When working with large lists or large data sets, consider using generators or iterators
instead of lists. Discuss and compare these two:

Beware of functions which iterate over the same collection multiple times. With
generators, you can iterate only once.
Know about itertools which provides a lot of functions for working with iterators.

Use relative paths and pathlib

Scripts that read data from absolute paths are not portable and typically break when
shared with a colleague or support help desk or reused by the next student/PhD
student/postdoc.
pathlib is a modern and portable way to handle paths in Python.

Project structure

As your project grows from a simple script, you should consider organizing your code into
modules and packages.
Function too long? Consider splitting it into multiple functions.
File too long? Consider splitting it into multiple files.
Difficult to name a function or file? It might be doing too much or unrelated things.
If your script can be imported into other scripts, wrap your main function in a if
__name__ == "__main__": block:

Why this construct? You can try to either import or run the following script:

Try to have all code inside some function. This can make it easier to understand, test, and
reuse. It can also help Python to free up memory when the function is done.

Reading and writing files

even_numbers1 = [number for number in range(10000000) if number % 2 == 0]

even_numbers2 = (number for number in range(10000000) if number % 2 == 0)

def main():
 ...

if __name__ == "__main__":
 main()

if __name__ == "__main__":
 print("I am being run as a script") # importing will not run this part
else:
 print("I am being imported")

Good construct to know to read a file:

Reading a huge data file? Read and process it in chunks or buffered or use a library which
does it for you.
On supercomputers, avoid reading and writing thousands of small files.
For input files, consider using standard formats like CSV, YAML, or TOML - then you don’t
need to write a parser.

Use subprocess instead of os.system

Many things can go wrong when launching external processes from Python. The
subprocess module is the recommended way to do this.
os.system is not portable and not secure enough.

Parallelizing

Use one of the many libraries: multiprocessing , mpi4py , Dask, Parsl, …
Identify independent tasks.
More often than not, you can convert an expensive loop into a command-line tool and
parallelize it using workflow management tools like Snakemake.

Profiling

 Objectives

Understand when improving code performance is worth the time and effort.
Knowing how to find performance bottlenecks in Python code.
Try Scalene as one of many tools to profile Python code.

[This page is adapted after https://aaltoscicomp.github.io/python-for-scicomp/profiling/]

Should we even optimize the code?

Classic quote to keep in mind: “Premature optimization is the root of all evil.” [Donald Knuth]

💬 Discussion

It is important to ask ourselves whether it is worth it.

Is it worth spending e.g. 2 days to make a program run 20% faster?
Is it worth optimizing the code so that it spends 90% less memory?

with open("input.txt", "r") as file:
 for line in file:
 print(line)

https://dask.org/
https://parsl-project.org/
https://snakemake.github.io/
https://github.com/plasma-umass/scalene
https://aaltoscicomp.github.io/python-for-scicomp/profiling/

Depends. What does it depend on?

Measure instead of guessing

Before doing code surgery to optimize the run time or lower the memory usage, we should
measure where the bottlenecks are. This is called profiling.

Analogy: Medical doctors don’t start surgery based on guessing. They first measure (X-ray,
MRI, …) to know precisely where the problem is.

Not only programming beginners can otherwise guess wrong, but also experienced
programmers can be surprised by the results of profiling.

One of the simplest tools is to insert timers

Below we will list some tools that can be used to profile Python code. But even without
these tools you can find time-consuming parts of your code by inserting timers:

Many tools exist

The list below here is probably not complete, but it gives an overview of the different tools
available for profiling Python code.

CPU profilers:

cProfile and profile
line_profiler
py-spy
Yappi
pyinstrument
Perfetto

Memory profilers:

import time

...
code before the function

start = time.time()
result = some_function()
print(f"some_function took {time.time() - start} seconds")

code after the function
...

https://docs.python.org/3/library/profile.html
https://kernprof.readthedocs.io/
https://github.com/benfred/py-spy
https://github.com/sumerc/yappi
https://pyinstrument.readthedocs.io/
https://perfetto.dev/docs/analysis/trace-processor-python

memory_profiler (not actively maintained)
Pympler
tracemalloc
guppy/heapy

Both CPU and memory:

Scalene

In the exercise below, we will use Scalene to profile a Python program. Scalene is a sampling
profiler that can profile CPU, memory, and GPU usage of Python.
Tracing profilers vs. sampling profilers

Tracing profilers record every function call and event in the program, logging the exact
sequence and duration of events.

Pros:
Provides detailed information on the program’s execution.
Deterministic: Captures exact call sequences and timings.

Cons:
Higher overhead, slowing down the program.
Can generate larger amount of data.

Sampling profilers periodically samples the program’s state (where it is and how much
memory is used), providing a statistical view of where time is spent.

Pros:
Lower overhead, as it doesn’t track every event.
Scales better with larger programs.

Cons:
Less precise, potentially missing infrequent or short calls.
Provides an approximation rather than exact timing.

💬 Analogy: Imagine we want to optimize the London Underground (subway) system

We wish to detect bottlenecks in the system to improve the service and for this we have
asked few passengers to help us by tracking their journey.

Tracing: We follow every train and passenger, recording every stop and delay. When
passengers enter and exit the train, we record the exact time and location.
Sampling: Every 5 minutes the phone notifies the passenger to note down their
current location. We then use this information to estimate the most crowded stations
and trains.

Choosing the right system size

https://pypi.org/project/memory-profiler/
https://pympler.readthedocs.io/
https://docs.python.org/3/library/tracemalloc.html
https://github.com/zhuyifei1999/guppy3/
https://github.com/plasma-umass/scalene

Sometimes we can configure the system size (for instance the time step in a simulation or the
number of time steps or the matrix dimensions) to make the program finish sooner.

For profiling, we should choose a system size that is representative of the real-world use
case. If we profile a program with a small input size, we might not see the same bottlenecks
as when running the program with a larger input size.

Often, when we scale up the system size, or scale the number of processors, new bottlenecks
might appear which we didn’t see before. This brings us back to: “measure instead of
guessing”.
Exercises

✍️ Exercise: Practicing profiling

In this exercise we will use the Scalene profiler to find out where most of the time is spent
and most of the memory is used in a given code example.

Please try to go through the exercise in the following steps:

1. Make sure scalene is installed in your environment (if you have followed this course
from the start and installed the recommended software environment, then it is).

2. Download Leo Tolstoy’s “War and Peace” from the following link (the text is provided
by Project Gutenberg): https://www.gutenberg.org/cache/epub/2600/pg2600.txt
(right-click and “save as” to download the file and save it as “book.txt”).

3. Before you run the profiler, try to predict in which function the code (the example
code is below) will spend most of the time and in which function it will use most of
the memory.

4. Save the example code as example.py and run the scalene profiler on the following
code example and browse the generated HTML report to find out where most of the
time is spent and where most of the memory is used:

Alternatively you can do this (and then open the generated file in a browser):

You can find an example of the generated HTML report in the solution below.

5. Does the result match your prediction? Can you explain the results?

Example code (example.py):

$ scalene example.py

$ scalene example.py --html > profile.html

https://www.gutenberg.org/
https://www.gutenberg.org/cache/epub/2600/pg2600.txt

✔︎Solution

"""
The code below reads a text file and counts the number of unique words in it
(case-insensitive).
"""
import re

def count_unique_words1(file_path: str) -> int:
 with open(file_path, "r", encoding="utf-8") as file:
 text = file.read()
 words = re.findall(r"\b\w+\b", text.lower())
 return len(set(words))

def count_unique_words2(file_path: str) -> int:
 unique_words = []
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 if word not in unique_words:
 unique_words.append(word)
 return len(unique_words)

def count_unique_words3(file_path: str) -> int:
 unique_words = set()
 with open(file_path, "r", encoding="utf-8") as file:
 for line in file:
 words = re.findall(r"\b\w+\b", line.lower())
 for word in words:
 unique_words.add(word)
 return len(unique_words)

def main():
 # book.txt is downloaded from
https://www.gutenberg.org/cache/epub/2600/pg2600.txt
 _result = count_unique_words1("book.txt")
 _result = count_unique_words2("book.txt")
 _result = count_unique_words3("book.txt")

if __name__ == "__main__":
 main()

Result of the profiling run for the above code example. You can click on the image to make
it larger.

Results:

Most time is spent in the count_unique_words2 function.
Most memory is used in the count_unique_words1 function.

Explanation:

The count_unique_words2 function is the slowest because it uses a list to store
unique words and checks if a word is already in the list before adding it. Checking
whether a list contains an element might require traversing the whole list, which is
an O(n) operation. As the list grows in size, the lookup time increases with the size
of the list.
The count_unique_words1 and count_unique_words3 functions are faster because
they use a set to store unique words. Checking whether a set contains an element
is an O(1) operation.
The count_unique_words1 function uses the most memory because it creates a list
of all words in the text file and then creates a set from that list.
The count_unique_words3 function uses less memory because it traverses the text
file line by line instead of reading the whole file into memory.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/exercise.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/exercise.png

What we can learn from this exercise:

When processing large files, it can be good to read them line by line or in batches
instead of reading the whole file into memory.
It is good to get an overview over standard data structures and their advantages
and disadvantages (e.g. adding an element to a list is fast but checking whether it
already contains the element can be slow).

Additional resources

Python performance workshop (by ENCCS)
Automated testing

 Objectives

Know where to start in your own project.
Know what possibilities and techniques are available in the Python world.
Have an example for how to make the testing part of code review.

Instructor note

(15 min) Motivation
(15 min) End-to-end tests
(15 min) Pytest
(15 min) Adding the unit test to GitHub Actions
(10 min) What else is possible
(20 min) Exercise

Motivation

Testing is a way to check that the code does what it is expected to.

Less scary to change code: tests will tell you whether something broke.
Easier for new people to join.
Easier for somebody to revive an old code.
End-to-end test: run the whole code and compare result to a reference.
Unit tests: test one unit (function or module). Can guide towards better structured code:
complicated code is more difficult to test.

How testing is often taught

https://enccs.github.io/python-perf/profile/

How this feels:

[Citation needed]

Instead, we will look at and discuss a real example where we test components from our
example project.
Where to start

Do I even need testing?:

A simple script or notebook probably does not need an automated test.

If you have nothing yet:

Start with an end-to-end test.
Describe in words how you check whether the code still works.
Translate the words into a script (any language).
Run the script automatically on every code change (GitHub Actions or GitLab CI).

If you want to start with unit-testing:

You want to rewrite a function? Start adding a unit test right there first.
You spend few days chasing a bug? Once you fix it, add a test to make sure it does not
come back.

End-to-end tests

def add(a, b):
 return a + b

def test_add():
 assert add(1, 2) == 3

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/owl.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/owl.png

This is our end-to-end test: https://github.com/workshop-material/classification-
task/blob/main/test.sh
Note how we can run it on GitHub automatically.
Also browse https://github.com/workshop-material/classification-task/actions.
If we have time, we can try to create a pull request which would break the code and see
how the test fails.

Pytest

Here is a simple example of a test:

To run the test(s):

Explanation: pytest will look for functions starting with test_ in files and directories given
as arguments. It will run them and report the results.

Good practice to add unit tests:

Add the test function and run it.
Break the function on purpose and run the test.
Does the test fail as expected?

Adding the unit test to GitHub Actions

Our next goal is that we want GitHub to run the unit test automatically on every change.

First we need to extend our environment.yml:

def fahrenheit_to_celsius(temp_f):
 """Converts temperature in Fahrenheit
 to Celsius.
 """
 temp_c = (temp_f - 32.0) * (5.0/9.0)
 return temp_c

this is the test function
def test_fahrenheit_to_celsius():
 temp_c = fahrenheit_to_celsius(temp_f=100.0)
 expected_result = 37.777777
 # assert raises an error if the condition is not met
 assert abs(temp_c - expected_result) < 1.0e-6

$ pytest example.py

https://github.com/workshop-material/classification-task/blob/main/test.sh
https://github.com/workshop-material/classification-task/blob/main/test.sh
https://github.com/workshop-material/classification-task/blob/d5baee6a7600986b5fccc2fca4ee80a90c2d5f69/.github/workflows/test.yml#L28
https://github.com/workshop-material/classification-task/actions
https://github.com/workshop-material/classification-task/blob/main/environment.yml

We also need to extend .github/workflows/test.yml (highlighted line):

In the above example, we assume that we added a test function to generate-predictions.py .

If we have time, we can try to create a pull request which would break the code and see how
the test fails.
What else is possible

Run the test set automatically on every code change:

name: classification-task
channels:
 - conda-forge
dependencies:
 - python <= 3.12
 - click
 - numpy
 - pandas
 - scipy
 - altair
 - vl-convert-python
 - pytest

name: Test

on:
 push:
 branches: [main]
 pull_request:
 branches: [main]

jobs:
 build:
 runs-on: ubuntu-24.04

 steps:
 - name: Checkout
 uses: actions/checkout@v4

 - uses: mamba-org/setup-micromamba@v1
 with:
 micromamba-version: '2.0.5-0' # any version from https://github.com/mamba-
org/micromamba-releases
 environment-file: environment.yml
 init-shell: bash
 cache-environment: true
 post-cleanup: 'all'
 generate-run-shell: false

 - name: Run tests
 run: |
 ./test.sh
 pytest generate-predictions.py
 shell: bash -el {0}

GitHub Actions
GitLab CI

The testing above used example-based testing.
Test coverage: how much of the code is traversed by tests?

Python: pytest-cov
Result can be deployed to services like Codecov or Coveralls.

Property-based testing: generates arbitrary data matching your specification and checks
that your guarantee still holds in that case.

Python: hypothesis
Snapshot-based testing: makes it easier to generate snapshots for regression tests.

Python: syrupy
Mutation testing: tests pass -> change a line of code (make a mutant) -> test again and
check whether all mutants get “killed”.

Python: mutmut
Exercises

✍️ Exercise

Experiment with the example project and what we learned above or try it on the example
project or on your own project:

Add a unit test. If you are unsure where to start, you can try to move the majority
vote into a separate function and write a test function for it.
Try to run pytest locally.
Check whether it fails when you break the corresponding function.
Try to run it on GitHub Actions.
Create a pull request which would break the code and see whether the automatic test
would catch it.
Try to design an end-to-end test for your project. Already the thought process can be
very helpful.

Concepts in refactoring and modular code design

Starting questions for the collaborative document

1. What does “modular code development” mean for you?
2. What best practices can you recommend to arrive at well structured, modular code in

your favourite programming language?
3. What do you know now about programming that you wish somebody told you earlier?
4. Do you design a new code project on paper before coding? Discuss pros and cons.
5. Do you build your code top-down (starting from the big picture) or bottom-up (starting

from components)? Discuss pros and cons.
6. Would you prefer your code to be 2x slower if it was easier to read and understand?

Pure functions

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://pytest-cov.readthedocs.io/
https://about.codecov.io/
https://coveralls.io/
https://hypothesis.readthedocs.io/
https://syrupy-project.github.io/syrupy/
https://mutmut.readthedocs.io/
https://github.com/workshop-material/classification-task/blob/79ce3be8fc187afbc33c91c11ea7003ce9bf56cd/generate_predictions.py#L28
https://github.com/workshop-material/classification-task/blob/79ce3be8fc187afbc33c91c11ea7003ce9bf56cd/generate_predictions.py#L28

Pure functions have no notion of state: They take input values and return values
Given the same input, a pure function always returns the same value
Function calls can be optimized away
Pure function == data

a) pure: no side effects

b) stateful: side effects

Pure functions are easier to:

Test
Understand
Reuse
Parallelize
Simplify
Optimize
Compose

Mathematical functions are pure:

\[f(x, y) = x - x^2 + x^3 + y^2 + xy\]
\[(f \circ g)(x) = f(g(x))\]

Unix shell commands are stateless:

But I/O and network and disk and databases are not pure!

def fahrenheit_to_celsius(temp_f):
 temp_c = (temp_f - 32.0) * (5.0/9.0)
 return temp_c

temp_c = fahrenheit_to_celsius(temp_f=100.0)
print(temp_c)

f_to_c_offset = 32.0
f_to_c_factor = 0.555555555
temp_c = 0.0

def fahrenheit_to_celsius_bad(temp_f):
 global temp_c
 temp_c = (temp_f - f_to_c_offset) * f_to_c_factor

fahrenheit_to_celsius_bad(temp_f=100.0)
print(temp_c)

$ cat somefile | grep somestring | sort | uniq | ...

I/O is impure
Keep I/O on the “outside” of your code
Keep the “inside” of your code pure/stateless

impure

bad code

impure

better code

pure

impure

good code

pure

From classes to functions

Object-oriented programming and functional programming both have their place and value.

Here is an example of expressing the same thing in Python in 4 different ways. Which one do
you prefer?

1. As a class:

2. As a dataclass:

import math

class Moon:
 def __init__(self, name, radius, contains_water=False):
 self.name = name
 self.radius = radius # in kilometers
 self.contains_water = contains_water

 def surface_area(self) -> float:
 """Calculate the surface area of the moon assuming a spherical shape."""
 return 4.0 * math.pi * self.radius**2

 def __repr__(self):
 return f"Moon(name={self.name!r}, radius={self.radius}, contains_water=
{self.contains_water})"

europa = Moon(name="Europa", radius=1560.8, contains_water=True)

print(europa)
print(f"Surface area (km^2) of {europa.name}: {europa.surface_area()}")

3. As a named tuple:

4. As a dict:

How to design your code before writing it

Document-driven development can be a nice approach:

from dataclasses import dataclass
import math

@dataclass
class Moon:
 name: str
 radius: float # in kilometers
 contains_water: bool = False

 def surface_area(self) -> float:
 """Calculate the surface area of the moon assuming a spherical shape."""
 return 4.0 * math.pi * self.radius**2

europa = Moon(name="Europa", radius=1560.8, contains_water=True)

print(europa)
print(f"Surface area (km^2) of {europa.name}: {europa.surface_area()}")

import math
from collections import namedtuple

def surface_area(radius: float) -> float:
 return 4.0 * math.pi * radius**2

Moon = namedtuple("Moon", ["name", "radius", "contains_water"])

europa = Moon(name="Europa", radius=1560.8, contains_water=True)

print(europa)
print(f"Surface area (km^2) of {europa.name}: {surface_area(europa.radius)}")

import math

def surface_area(radius: float) -> float:
 return 4.0 * math.pi * radius**2

europa = {"name": "Europa", "radius": 1560.8, "contains_water": True}

print(europa)
print(f"Surface area (km^2) of {europa['name']}: {surface_area(europa['radius'])}")

Write the documentation/tutorial first
Write the code to make the documentation true
Refactor the code to make it clean and maintainable

But also it’s almost impossible to design everything correctly from the start -> make it
easy to change -> keep it simple

How to parallelize independent tasks using workflows (example:
Snakemake)

 Objectives

Understand the concept of a workflow management tool.
Instead of thinking in terms of individual step-by-step commands, think in terms of
dependencies (rules).
Try to port our computational pipeline to Snakemake.
See how Snakemake can identify independent steps and run them in parallel.
It is not our goal to remember all the details of Snakemake.

The problem

Imagine we want to process a large number of similar input data.

This could be one way to do it:

Discuss possible problems with this approach.

Thinking in terms of dependencies

#!/usr/bin/env bash

num_rounds=10

for i in $(seq -w 1 ${num_rounds}); do
 python generate_data.py \
 --num-samples 2000 \
 --training-data data/train_${i}.csv \
 --test-data data/test_${i}.csv

 python generate_predictions.py \
 --num-neighbors 7 \
 --training-data data/train_${i}.csv \
 --test-data data/test_${i}.csv
 --predictions results/predictions_${i}.csv

 python plot_results.py \
 --training-data data/train_${i}.csv \
 --predictions results/predictions_${i}.csv \
 --output-chart results/chart_${i}.png
done

https://snakemake.github.io/

For the following we will assume that we have the input data available:

From here on we will focus on the processing part.

The central file in Snakemake is the snakefile . This is how we can express the pipeline in
Snakemake (below we will explain it):

#!/usr/bin/env bash

num_rounds=10

for i in $(seq -w 1 ${num_rounds}); do
 python generate_data.py \
 --num-samples 2000 \
 --training-data data/train_${i}.csv \
 --test-data data/test_${i}.csv
done

Explanation:

The snakefile contains 3 rules and it will run the “all” rule by default unless we ask it to
produce a different “target”:

“all”
“chart”
“predictions”

Rules “predictions” and “chart” depend on input and produce output.
Note how “all” depends on the output of the “chart” rule and how “chart” depends on the
output of the “predictions” rule.
The shell part of the rule shows how to produce the output from the input.
We ask Snakemake to collect all files that match "data/train_{number}.csv" and from
this to infer the wildcards {number} .

the comma is there because glob_wildcards returns a named tuple
numbers, = glob_wildcards("data/train_{number}.csv")

rule that collects the target files
rule all:
 input:
 expand("results/chart_{number}.svg", number=numbers)

rule chart:
 input:
 script="plot_results.py",
 predictions="results/predictions_{number}.csv",
 training="data/train_{number}.csv"
 output:
 "results/chart_{number}.svg"
 log:
 "logs/chart_{number}.txt"
 shell:
 """
 python {input.script} --training-data {input.training} --predictions
{input.predictions} --output-chart {output}
 """

rule predictions:
 input:
 script="generate_predictions.py",
 training="data/train_{number}.csv",
 test="data/test_{number}.csv"
 output:
 "results/predictions_{number}.csv"
 log:
 "logs/predictions_{number}.txt"
 shell:
 """
 python {input.script} --num-neighbors 7 --training-data {input.training} --
test-data {input.test} --predictions {output}
 """

Later we can refer to {number} throughout the snakefile .
This part defines what we want to have at the end:

Rules correspond to steps and parameter scanning can be done with wildcards.
Exercise

✍️ Exercise: Practicing with Snakemake

1. Create a snakefile (above) and run it with Snakemake (adjust number of cores):

2. Check the output. Did it use all available cores? How did it know which steps it can
start in parallel?

3. Run Snakemake again. Now it should finish almost immediately because all the results
are already there. Aha! Snakemake does not repeat steps that are already done. You
can force it to re-run all with snakemake --delete-all-output .

4. Remove few files from results/ and run it again. Snakemake should now only re-run
the steps that are necessary to get the deleted files.

5. Modify generate_predictions.py which is used in the rule “predictions”. Now
Snakemake will only re-run the steps that depend on this script.

6. It is possible to only process one file with (useful for testing):

7. Add few more data files to the input directory data/ (for instance by copying some
existing ones) and observe how Snakemake will pick them up next time you run the
workflow, without changing the snakefile .

What else is possible?

With the option --keep-going we can tell Snakemake to not give up on first failure.
The option --restart-times 3 would tell Snakemake to try to restart a rule up to 3 times
if it fails.
It is possible to tell Snakemake to use a locally mounted file system instead of the default
network file system for certain rules (documentation).

rule all:
 input:
 expand("results/chart_{number}.svg", number=numbers)

$ snakemake --cores 8

$ snakemake results/predictions_09.csv

https://snakemake.github.io/snakemake-plugin-catalog/plugins/storage/fs.html

Sometimes you need to run different rules inside different software environments (e.g.
Conda environments) and this is possible.
A lot more is possible:

Snakemake documentation
Snakemake tutorial

More elaborate example

In this example below we also scan over a range of numbers for the --num-neighbors
parameter:

the comma is there because glob_wildcards returns a named tuple
numbers, = glob_wildcards("data/train_{number}.csv")

define the parameter scan for num-neighbors
neighbor_values = [1, 3, 5, 7, 9, 11]

rule that collects all target files
rule all:
 input:
 expand("results/chart_{number}_{num_neighbors}.svg", number=numbers,
num_neighbors=neighbor_values)

rule chart:
 input:
 script="plot_results.py",
 predictions="results/predictions_{number}_{num_neighbors}.csv",
 training="data/train_{number}.csv"
 output:
 "results/chart_{number}_{num_neighbors}.svg"
 log:
 "logs/chart_{number}_{num_neighbors}.txt"
 shell:
 """
 python {input.script} --training-data {input.training} --predictions
{input.predictions} --output-chart {output}
 """

rule predictions:
 input:
 script="generate_predictions.py",
 training="data/train_{number}.csv",
 test="data/test_{number}.csv"
 output:
 "results/predictions_{number}_{num_neighbors}.csv"
 log:
 "logs/predictions_{number}_{num_neighbors}.txt"
 params:
 num_neighbors=lambda wildcards: wildcards.num_neighbors
 shell:
 """
 python {input.script} --num-neighbors {params.num_neighbors} --training-data
{input.training} --test-data {input.test} --predictions {output}
 """

https://snakemake.readthedocs.io/
https://snakemake.readthedocs.io/en/stable/tutorial/tutorial.html

Other workflow management tools

Another very popular one is Nextflow.
Many workflow management tools exist (overview).

Choosing a software license

 Objectives

Knowing about what derivative work is and whether we can share it.
Get familiar with terminology around licensing.
We will add a license to our example project.

Copyright and derivative work: Sampling/remixing

[Midjourney, CC-BY-NC 4.0]

https://www.nextflow.io/
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/record-player.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/record-player.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/turntable.png
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/turntable.png

[Midjourney, CC-BY-NC 4.0]

Copyright controls whether and how we can distribute the original work or the derivative
work.
In the context of software it is more about being able to change and distribute changes.
Changing and distributing software is similar to changing and distributing music
You can do almost anything if you don’t distribute it

Often we don’t have the choice:

We are expected to publish software
Sharing can be good insurance against being locked out

Can we distribute our changes with the research community or our future selves?
Why software licenses matter

You find some great code that you want to reuse for your own publication.

This is good for the original author - you will cite them. Maybe other people who cite you
will cite them.
You modify and remix the code.
Two years later … ⌛
Time to publish: You realize there is no license to the original work 😱

Now we have a problem:

😬 “Best” case: You manage to publish the paper without the software/data. Others
cannot build on your software and data.
😱 Worst case: You cannot publish it at all. Journal requires that papers should come with
data and software so that they are reproducible.

Taxonomy of software licenses

European Commission, Directorate-General for Informatics, Schmitz, P., European Union Public
Licence (EUPL): guidelines July 2021, Publications Office, 2021,
https://data.europa.eu/doi/10.2799/77160

Comments:

Arrows represent compatibility (A -> B: B can reuse A)
Proprietary/custom: Derivative work typically not possible (no arrow goes from
proprietary to open)
Permissive: Derivative work does not have to be shared
Copyleft/reciprocal: Derivative work must be made available under the same license
terms
NC (non-commercial) and ND (non-derivative) exist for data licenses but not really for
software licenses

Great resource for comparing software licenses: Joinup Licensing Assistant

https://data.europa.eu/doi/10.2799/77160
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-find-and-compare-software-licenses

Provides comments on licenses
Easy to compare licenses (example)
Joinup Licensing Assistant - Compatibility Checker
Not biased by some company agenda

Exercise/demo

✍️ Exercise

Let us choose a license for our example project.
We will add a LICENSE to the repository.

💬 Discussion

What if my code uses libraries like numpy , pandas , scipy , altair , etc. Do we need
to look at their licenses? In other words, is our project derivative work of something
else?

More resources

Presentation slides “Practical software licensing” (R. Bast):
https://doi.org/10.5281/zenodo.11554001
Social coding lesson material
UiT research software licensing guide (draft)
Research institution policies to support research software (compiled by the Research
Software Alliance)
More reading material

More exercises

✍️ Exercise: What constitutes derivative work?

Which of these are derivative works? Also reflect/discuss how this affects the choice of
license.

A. Download some code from a website and add on to it
B. Download some code and use one of the functions in your code
C. Changing code you got from somewhere
D. Extending code you got from somewhere
E. Completely rewriting code you got from somewhere
F. Rewriting code to a different programming language
G. Linking to libraries (static or dynamic), plug-ins, and drivers
H. Clean room design (somebody explains you the code but you have never seen it)
I. You read a paper, understand algorithm, write own code

✔︎Solution

https://joinup.ec.europa.eu/licence/compare/BSD-3-Clause;Apache-2.0
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://doi.org/10.5281/zenodo.11554001
https://coderefinery.github.io/social-coding/
https://research-software.uit.no/blog/2023-software-licensing-guide/
https://www.researchsoft.org/software-policies/
https://www.researchsoft.org/software-policies/
https://coderefinery.github.io/social-coding/software-licensing/#great-resources

Derivative work: A-F
Not derivative work: G-I
E and F: This depends on how you do it, see “clean room design”.

✍️ Exercise: Licensing situations

Consider some common licensing situations. If you are part of an exercise group, discuss
these with others:

1. What is the StackOverflow license for code you copy and paste?
2. A journal requests that you release your software during publication. You have copied

a portion of the code from another package, which you have forgotten. Can you
satisfy the journal’s request?

3. You want to fix a bug in a project someone else has released, but there is no license.
What risks are there?

4. How would you ask someone to add a license?
5. You incorporate MIT, GPL, and BSD3 licensed code into your project. What possible

licenses can you pick for your project?
6. You do the same as above but add in another license that looks strong copyleft. What

possible licenses can you use now?
7. Do licenses apply if you don’t distribute your code? Why or why not?
8. Which licenses are most/least attractive for companies with proprietary software?

✔︎Solution

1. As indicated here, all publicly accessible user contributions are licensed under
Creative Commons Attribution-ShareAlike license. See Stackoverflow Terms of
service for more detailed information.

2. “Standard” licensing rules apply. So in this case, you would need to remove the
portion of code you have copied from another package before being able to release
your software.

3. By default you are no authorized to use the content of a repository when there is
no license. And derivative work is also not possible by default. Other risks: it may
not be clear whether you can use and distribute (publish) the bugfixed code. For
the repo owners it may not be clear whether they can use and distributed the
bugfixed code. However, the authors may have forgotten to add a license so we
suggest you to contact the authors (e.g. make an issue) and ask whether they are
willing to add a license.

4. As mentionned in 3., the easiest is to fill an issue and explain the reasons why you
would like to use this software (or update it).

5. Combining software with different licenses can be tricky and it is important to
understand compatibilities (or lack of compatibilities) of the various licenses. GPL
license is the most protective (BSD and MIT are quite permissive) so for the

https://stackoverflow.com/help/licensing
https://creativecommons.org/licenses/by-sa/4.0/
https://stackoverflow.com/legal/terms-of-service/public#licensing
https://stackoverflow.com/legal/terms-of-service/public#licensing

resulting combined software you could use a GPL license. However, re-licensing
may not be necessary.

6. Derivative work would need to be shared under this strong copyleft license (e.g.
AGPL or GPL), unless the components are only plugins or libraries.

7. If you keep your code for yourself, you may think you do not need a license.
However, remember that in most companies/universities, your employer is
“owning” your work and when you leave you may not be allowed to “distribute
your code to your future self”. So the best is always to add a license!

8. The least attractive licenses for companies with proprietary software are licenses
where you would need to keep an open license when creating derivative work. For
instance GPL and and AGPL. The most attractive licenses are permissive licenses
where they can reuse, modify and relicense with no conditions. For instance MIT,
BSD and Apache License.

How to publish your code

 Objectives

Make our code citable and persistent.
Make our Notebook reusable and persistent.

Is putting software on GitHub/GitLab/… publishing?

FAIR principles. (c) Scriberia for The Turing Way, CC-BY.

Is it enough to make the code public for the code to remain findable and accessible?

No. Because nothing prevents me from deleting my GitHub repository or rewriting the Git
history and we have no guarantee that GitHub will still be around in 10 years.

file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/8-fair-principles.jpg
file:///home/runner/work/reproducible-python-ml/reproducible-python-ml/_build/pyppeteer/_images/8-fair-principles.jpg
http://www.scriberia.co.uk/
https://the-turing-way.netlify.com/

Make your code citable and persistent: Get a persistent identifier (PID) such as DOI in
addition to sharing the code publicly, by using services like Zenodo or similar services.

How to make your software citable

💬 Discussion: Explain how you currently cite software

Do you cite software that you use? How?
If I wanted to cite your code/scripts, what would I need to do?

Checklist for making a release of your software citable:

Assigned an appropriate license
Described the software using an appropriate metadata format
Clear version number
Authors credited
Procured a persistent identifier
Added a recommended citation to the software documentation

This checklist is adapted from: N. P. Chue Hong, A. Allen, A. Gonzalez-Beltran, et al., Software
Citation Checklist for Developers (Version 0.9.0). Zenodo. 2019b. (DOI)

Our practical recommendations:

Add a file called CITATION.cff (example).
Get a digital object identifier (DOI) for your code on Zenodo (example).
Make it as easy as possible: clearly say what you want cited.

This is an example of a simple CITATION.cff file:

More about CITATION.cff files:

GitHub now supports CITATION.cff files
Web form to create, edit, and validate CITATION.cff files
Video: “How to create a CITATION.cff using cffinit”

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
 - family-names: Doe
 given-names: Jane
 orcid: https://orcid.org/1234-5678-9101-1121
title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2021-08-11

https://zenodo.org/
https://doi.org/10.5281/zenodo.3482769
https://citation-file-format.github.io/
https://github.com/bast/runtest/blob/main/CITATION.cff
https://en.wikipedia.org/wiki/Digital_object_identifier
https://zenodo.org/
https://zenodo.org/record/8003695
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
https://citation-file-format.github.io/cff-initializer-javascript/
https://www.youtube.com/watch?v=zcgLIT5Qd4M

Papers with focus on scientific software

Where can I publish papers which are primarily focused on my scientific software? Great
list/summary is provided in this blog post: “In which journals should I publish my software?”
(Neil P. Chue Hong)

How to cite software

 Great resources

A. M. Smith, D. S. Katz, K. E. Niemeyer, and FORCE11 Software Citation Working
Group, “Software citation principles,” PeerJ Comput. Sci., vol. 2, no. e86, 2016 (DOI)
D. S. Katz, N. P. Chue Hong, T. Clark, et al., Recognizing the value of software: a
software citation guide [version 2; peer review: 2 approved]. F1000Research 2021,
9:1257 (DOI)
N. P. Chue Hong, A. Allen, A. Gonzalez-Beltran, et al., Software Citation Checklist for
Authors (Version 0.9.0). Zenodo. 2019a. (DOI)
N. P. Chue Hong, A. Allen, A. Gonzalez-Beltran, et al., Software Citation Checklist for
Developers (Version 0.9.0). Zenodo. 2019b. (DOI)

Recommended format for software citation is to ensure the following information is provided
as part of the reference (from Katz, Chue Hong, Clark, 2021 which also contains software
citation examples):

Creator
Title
Publication venue
Date
Identifier
Version
Type

Exercise/demo

✍️ Exercise

We will add a CITATION.cff file to our example repository.
We will get a DOI using the Zenodo sandbox:

We will log into the Zenodo sandbox using GitHub.
We will follow these steps and finally create a GitHub release and get a DOI.

We can try to create an example repository with a Jupyter Notebook and run it
through Binder to make it persistent and citable.

💬 Discussion

https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software
https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.5281/zenodo.3479199
https://doi.org/10.5281/zenodo.3482769
https://doi.org/10.12688/f1000research.26932.2
https://sandbox.zenodo.org/
https://sandbox.zenodo.org/
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://mybinder.org/

Why did we use the Zenodo sandbox and not the “real” Zenodo for our exercise?

More resources

Social coding lesson material
Sharing Jupiter Notebooks

Creating a Python package and deploying it to PyPI

 Objectives

In this episode we will create a pip-installable Python package and learn how to deploy it
to PyPI. As example, we can use one of the Python scripts from our example repository.

Creating a Python package with the help of Flit

There are unfortunately many ways to package a Python project:

setuptools is the most common way to package a Python project. It is very powerful and
flexible, but also can get complex.
flit is a simpler alternative to setuptools . It is less versatile, but also easier to use.
poetry is a modern packaging tool which is more versatile than flit and also easier to

use than setuptools .
twine is another tool to upload packages to PyPI.

…

 This will be a demo

We will try to package the code together on the big screen.
We will share the result on GitHub so that you can retrace the steps.
In this demo, we will use Flit to package the code. From Why use Flit?:

Make the easy things easy and the hard things possible is an old motto from the
Perl community. Flit is entirely focused on the easy things part of that, and leaves
the hard things up to other tools.

Step 1: Initialize the package metadata and try a local install

1. Our starting point is that we have a Python script called example.py which we want to
package.

2. Now we follow the flit quick-start usage and add a docstring to the script and a
__version__ .

3. We then run flit init to create a pyproject.toml file and answer few questions. I
obtained:

https://coderefinery.github.io/social-coding/software-citation/
https://coderefinery.github.io/jupyter/sharing/
https://flit.pypa.io/
https://flit.pypa.io/en/latest/rationale.html
https://flit.pypa.io/en/stable/#usage

To have a more concrete example, if we package the generate_data.py script from the
example repository, then replace the name example with generate_data .

4. We now add dependencies and also an entry point for the script:

5. Before moving on, try a local install:

💬What if you have more than just one script?

Create a directory with the name of the package.
Put the scripts in the directory.

[build-system]
requires = ["flit_core >=3.2,<4"]
build-backend = "flit_core.buildapi"

[project]
name = "example"
authors = [{name = "Firstname Lastname", email = "first.last@example.org"}]
license = {file = "LICENSE"}
classifiers = ["License :: OSI Approved :: European Union Public Licence 1.2 (EUPL
1.2)"]
dynamic = ["version", "description"]

[project.urls]
Home = "https://example.org"

[build-system]
requires = ["flit_core >=3.2,<4"]
build-backend = "flit_core.buildapi"

[project]
name = "example"
authors = [{name = "Firstname Lastname", email = "first.last@example.org"}]
license = {file = "LICENSE"}
classifiers = ["License :: OSI Approved :: European Union Public Licence 1.2 (EUPL
1.2)"]
dynamic = ["version", "description"]
dependencies = [
 "click",
 "numpy",
 "pandas",
]

[project.urls]
Home = "https://example.org"

[project.scripts]
example = "example:main"

$ flit install --symlink

https://github.com/workshop-material/classification-task

Add a __init__.py file to the directory which contains the module docstring and the
version and re-exports the functions from the scripts.

Step 2: Testing an install from GitHub

If a local install worked, push the pyproject.toml to GitHub and try to install the package
from GitHub.

In a requirements.txt file, you can specify the GitHub repository and the branch (adapt the
names):

A corresponding envionment.yml file for conda would look like this (adapt the names):

Does it install and run? If yes, move on to the next step (test-PyPI and later PyPI).

Step 3: Deploy the package to test-PyPI using GitHub Actions

Our final step is to create a GitHub Actions workflow which will run when we create a new
release.

 Danger

I recommend to first practice this on the test-PyPI before deploying to the real PyPI.

Here is the workflow (.github/workflows/package.yml):

git+https://github.com/ORGANIZATION/REPOSITORY.git@main

name: experiment
channels:
 - conda-forge
dependencies:
 - python <= 3.12
 - pip
 - pip:
 - git+https://github.com/ORGANIZATION/REPOSITORY.git@main

About the FLIT_PASSWORD: ${{ secrets.PYPI_TOKEN }} :

You obtain the token from PyPI by going to your account settings and creating a new
token.
You add the token to your GitHub repository as a secret (here with the name
PYPI_TOKEN).

Credit

This lesson is a mashup of the following sources (all CC-BY):

https://github.com/coderefinery/reproducible-python (shares common history with this
lesson)
https://github.com/coderefinery/python-progression

The lesson uses the following example repository:

https://github.com/workshop-material/classification-task

The classification task has replaced the “planets” example repository used in the original
lesson.

name: Package

on:
 release:
 types: [created]

jobs:
 build:
 permissions: write-all
 runs-on: ubuntu-24.04

 steps:
 - name: Switch branch
 uses: actions/checkout@v4
 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: "3.12"
 - name: Install Flit
 run: |
 pip install flit
 - name: Flit publish
 run:
 flit publish
 env:
 FLIT_USERNAME: __token__
 FLIT_PASSWORD: ${{ secrets.PYPI_TOKEN }}
 # uncomment the following line if you are using test.pypi.org:
FLIT_INDEX_URL: https://test.pypi.org/legacy/
 # this is how you can test the installation from test.pypi.org:
pip install --index-url https://test.pypi.org/simple/ package_name

https://github.com/coderefinery/reproducible-python
https://github.com/coderefinery/python-progression
https://github.com/workshop-material/classification-task

